ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling |
Qingbang Han(韩庆邦)1, Zhipeng Liu(刘志鹏)1, Cheng Yin(殷澄)1,†, Simeng Wu(吴思梦)1, Yinlong Luo(罗寅龙)2, Zixin Yang(杨子鑫)2, Xiuyang Pang(庞修洋)2, Yiqiu Wang(王溢秋)1, Xuefen Kan(阚雪芬)3, Yuqiu Zhang(张雨秋)2, Qiang Yu(俞强)2,4, and Jian Wu(吴坚)2,‡ |
1 College of Information Science and Engineering, Hohai University, Changzhou 213200, China; 2 College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China; 3 School of Transportation Engineering, Jiangsu Shipping College, Nantong 226010, China; 4 i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China |
|
|
Abstract Orbital angular momentum (OAM) conversion is critical in understanding interactions between a structural sound field and a planar lattice. Herein, we explore the evolution of a monochromatic acoustic vortex beam (AVB) that is scattered by a phononic crystal (PnC) or a correlated random lattice. The phenomenon is ascribed to the enhanced orbit-orbit angular momentum coupling induced by the band structure. By modifying the coupling condition, accurate and continuous micro-manipulation of AVBs can be achieved, including the transverse/lateral gravity shift, the dynamics of the phase singularities, and the spatial distribution of acoustic pressure, etc. This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes, and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.
|
Received: 02 April 2024
Revised: 23 May 2024
Accepted manuscript online: 13 June 2024
|
PACS:
|
43.40.+s
|
(Structural acoustics and vibration)
|
|
43.20.+g
|
(General linear acoustics)
|
|
46.40.-f
|
(Vibrations and mechanical waves)
|
|
46.40.Cd
|
(Mechanical wave propagation (including diffraction, scattering, and dispersion))
|
|
Fund: This work was supported by the National Natural Science foundation of China (Grant No. 12174085), the Fundamental Research Funds for the Central Universities (Grant No. B220202018), the Basic Science (Natural Science) Research Project for the Universities of Jiangsu Province (Grant No. 23KJD140002), and Natural Science Foundation of Nantong (Grant No. JC2023081). |
Corresponding Authors:
Cheng Yin, Jian Wu
E-mail: yinch@hhu.edu.cn;wujian15203@163.com
|
Cite this article:
Qingbang Han(韩庆邦), Zhipeng Liu(刘志鹏), Cheng Yin(殷澄), Simeng Wu(吴思梦), Yinlong Luo(罗寅龙), Zixin Yang(杨子鑫), Xiuyang Pang(庞修洋), Yiqiu Wang(王溢秋), Xuefen Kan(阚雪芬), Yuqiu Zhang(张雨秋), Qiang Yu(俞强), and Jian Wu(吴坚) Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling 2024 Chin. Phys. B 33 094301
|
[1] Li L, Guo Y, Zhang Z, Shang Z, Li C, Wang J, Gao L, Hai L, Gao C and Fu S 2023 Adv. Photon. 5 056002 [2] Mondal PK, Deb B and Majumder S 2015 Phys. Rev. 92 043603 [3] Li X R, Jia Y R, Luo Y C, Yao J and Wu D J 2021 Appl. Phys. Lett. 118 043503 [4] Gao S, Li Y, Ma C, Cheng Y and Liu X 2021 Nat. Commun. 12 2006 [5] Bliokh K Y and Nori F 2019 Natl. Sci. Rev. 99 174310 [6] Shi C, Zhao R, Long Y, Yang S, Wang Y, Chen H, Ren J and Zhang X 2019 Natl. Sci. Rev. 6 707 [7] Zou Z, Lirette R and Zhang L 2020 Phys. Rev. Lett. 125 074301 [8] Fan S W, Wang Y F, Cao L, Zhu Y, Chen A L, Vincent B, Assouar B and Wang Y S 2020 Appl. Phys. Lett. 116 163504 [9] Zhang C, Jiang X, He J, Li Y and Ta D 2023 Adv. Sci. 10 2206619 [10] Ruan Y, Zhu J, Lin Q, Wang Y, Zhou D, Wang S, Li C, Shi J and Chen R 2024 J. Sound Vibr. 581 118380 [11] Fu Y, Tian Y, Li X, Yang S, Liu Y, Xu Y and Lu M 2022 Phys. Rev. Lett. 128 104501 [12] Jiang X, Li Y, Liang B, Cheng J and Zhang L 2016 Phys. Rev. Lett. 117 034301 [13] Wang Y and Qian J 2021 Micromachines 12 1388 [14] Gong K, Zhou X and Mo J 2022 Smart Mater. Struct. 31 115001 [15] Zhang B, Dong H and Gong J 2013 Acoust. Phys. 59 97 [16] Xu Z, Qian M L, Cheng Q and Liu X J 2016 Chin. Phys. Lett. 33 114302 [17] Yin G, Li P, Yang X, Tian Y, Han J, Ren W and Guo J 2022 Acta Acust. 6 101051 [18] Li D, Yan X, Xu Z and Ta D 2019 Ultrasonics 95 32 [19] Quan J, Sun B, Fu Y, Gao L and Xu Y 2024 Chin. Phys. Lett. 41 014301 [20] Fa L, Xue L, Fa Y, Han Y, Zhang Y, Cheng H, Ding P, Li G, Tang S, Bai C, Xi B, Zhang X and Zhao M 2017 Sci. China Phys. Mech. Astron. 60 104311 [21] Fan X and Zhang L 2021 Phys. Rev. Res. 3 013251 [22] Wang W, Liu J, Liang B and Cheng J 2022 Chin. Phys. B 31 094302 [23] Wang W, Tan Y, Liang B, Ma G, Wang S and Cheng J 2021 Phys. Rev. B 104 174301 [24] Bastawrous M V and Hussein M I 2021 J. Sound Vibr. 514 116428 [25] Jin Y, Jia XY, Wu Q Q, He X, Yu G C and Wu L Z 2022 J. Sound Vibr. 521 116721 [26] Overy A R, Simonov A, Chater P A, Tucker M G and Goodwin A L 2017 Basic Solid State Phys. 254 1600586 [27] Hu H, Strybulevych A, Page J H, Skipetrov S E and van Tiggelen B A 2008 Nat. Phys. 4 945 [28] Hu R and Tian Z 2021 Phys. Rev. B 103 045304 [29] Wang J, Huo L, Liu C and Song G 2021 Struct. Health Monit. 20 2917 [30] Gao W, Zhang C, Song G and Li H N 2021 Struct. Health Monit. 20 188201 [31] De Moura F A and Lyra M L 1998 Phys. Rev. Lett. 81 3735 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|