Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080201    DOI: 10.1088/1674-1056/ad4d64
GENERAL   Next  

Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions

Hui-Chao Zhao(赵会超), Lei-Nuo Ma(马雷诺), and Xi-Yang Xie(解西阳)†
Department of Mathematics and Physics, and Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China
Abstract  This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions. These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers. By analyzing the Lax pair and the Riemann-Hilbert problem, we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system. Furthermore, we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors. Through appropriate parameter selections, we observe various nonlinear phenomena, including the disappearance of solitons after interaction and their transformation into breather-like solitons, as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.
Keywords:  soliton      Riemann-Hilbert problem      non-zero boundary conditions      coupled Lakshmanan-Porsezian-Daniel equation  
Received:  16 April 2024      Revised:  15 May 2024      Accepted manuscript online: 
PACS:  02.30.Rz (Integral equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2021502004) and the Fundamental Research Funds for the Central Universities (Grant No. 2024MS126).
Corresponding Authors:  Xi-Yang Xie     E-mail:  xiyangxie@ncepu.edu.cn

Cite this article: 

Hui-Chao Zhao(赵会超), Lei-Nuo Ma(马雷诺), and Xi-Yang Xie(解西阳) Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions 2024 Chin. Phys. B 33 080201

[1] Wazwaz A M and Kaur L 2019 Nonlinear Dynam. 97 83
[2] Biswas A, Khan K, Rahman A, Yildirim A, Hayat T and Aldossary O M 2012 J. Optoelectron. Adv. Mater. 14 571
[3] Wazwaz A M 2018 Nonlinear Dynam. 94 2655
[4] Gao X Y 2024 Chin. J. Phys. 86 572
[5] Wang H, Yang H, Tian Y and Liu W 2024 Chaos 34 053125
[6] Lakshmanan M, Porsezian K and Daniel M 1988 Phys. Lett. A 133 483
[7] Wang L H, Porsezian K and He J S 2013 Phys. Rev. E 87 069904
[8] Gao X Y 2024 Appl. Math. Lett. 152 109018
[9] Degasperis A and Lombardo S 2013 Phys. Rev. E 88 052914
[10] Agrawal G P 2001 Nonlinear fiber optics (San Diego: Academic Press)
[11] Chen J and Feng B F 2023 Stud. Appl. Math. 150 35
[12] Chen J, Yang B and Feng B F 2023 Stud. Appl. Math. 151 1020
[13] Wang H, Zhou Q, Yang H, Meng X, Tian Y and Liu W 2023 Proc. R. Soc. A 479 20230601
[14] Du Z, Tian B, Chai H P, Sun Y and Zhao X H 2018 Chaos, Solitons and Fractals 109 90
[15] Li M Z, Tian B, Qu Q X, Chai H P, Liu L and Du Z 2017 Superlattice. Microst. 112 20
[16] Jia R R and Wang Y F 2022 Wave Motion 114 103042
[17] Guan X, Yang H, Meng X and Liu W 2023 Appl. Math. Lett. 136 108466
[18] Ma L N, Li S, Wang T M, Xie X Y and Du Z 2023 Phys. Scripta 98 075222
[19] Zhu J, Wang L and Geng X 2018 Front. Math. China 13 1245
[20] Zhang Y, Rao J, Cheng Y and He J 2019 Physica D 399 173
[21] Kraus D, Biondini G and Kovačič G 2015 Nonlinearity 28 3101
[22] An L, Ling L and Zhang X 2024 Physica D 458 133888
[23] Kudryashov N A, Kutukov A A and Lavrova S F 2024 Commun. Nonlinear Sci. Numer. Simul. 128 107645
[24] Ling L and Zhang X 2024 Physica D 457 133981
[25] Ju L, Zhang Y, Afzal F and Feng B 2024 Mod. Phys. Lett. B 38 2350254
[26] Rani S, Dhiman S K and Kumar S 2024 Opt. Quant. Electron. 56 532
[27] Luesink E, Ephrati S, Cifani P and Geurts B 2024 Adv. Contin. Discret. M 2024 1
[28] Chen Y X 2023 Chaos, Solitons and Fractals 169 113251
[29] Xu S Y, Zhou Q and Liu W 2023 Nonlinear Dynam. 111 18401
[30] Chen J, Song J, Zhou Z and Yan Z 2023 Chaos, Solitons and Fractals 176 114090
[31] Geng K L, Mou D S and Dai C Q 2023 Nonlinear Dynam. 111 603
[32] Zhang Y and Lin B 2024 Nonlinear Dynam. 112 1
[33] Cotti G 2024 J. Lond. Math. Soc. 109 e12860
[34] Geng X, Liu W and Li R 2024 J. Differ. Equations 386 113
[35] Li S, Xia T and Wei H 2023 Chin. Phys. B 32 040203
[36] Novikov S, Manakov S V, Pitaevskii L P and Zakharov V E 1984 Theory of solitons: the inverse scattering method (Springer Science and Business Media)
[37] Ablowitz M J, Ablowitz M, Clarkson P and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press)
[38] Peng W Q and Chen Y 2022 Physica D 435 133274
[39] Ma W X 2023 Physica D 446 133672
[1] Riemann-Hilbert problem for the defocusing Lakshmanan-Porsezian-Daniel equation with fully asymmetric nonzero boundary conditions
Jianying Ji(纪建英) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090201.
[2] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[3] Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers
Zhong-Zhou Lan(兰中周). Chin. Phys. B, 2024, 33(6): 060201.
[4] On the generation of high-quality Nyquist pulses in mode-locked fiber lasers
Yuxuan Ren(任俞宣), Jinman Ge(葛锦蔓), Xiaojun Li(李小军), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2024, 33(3): 034210.
[5] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[6] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[7] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[8] Influence of the initial parameters on soliton interaction in nonlinear optical systems
Xinyi Zhang(张昕仪) and Ye Wu(吴晔). Chin. Phys. B, 2023, 32(7): 070505.
[9] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
[10] Riemann-Hilbert approach of the complex Sharma-Tasso-Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[11] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[12] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[13] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[14] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[15] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
No Suggested Reading articles found!