|
|
Topological phases and edge modes of an uneven ladder |
Wen-Chuang Shang(商文创)1,2, Yi-Ning Han(韩熠宁)1,2, Shimpei Endo3, and Chao Gao(高超)1,2,† |
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China; 2 Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China; 3 Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan |
|
|
Abstract We investigate the topological properties of a two-chain quantum ladder with uneven legs, i.e., the two chains differ in their periods by a factor of 2. Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps. It also provides opportunities to explore fundamental concepts concerning band topology and edge modes, including the difference of intracellular and intercellular Zak phases, and the role of the inversion symmetry (IS). We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation. We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap, while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum. Furthermore, by projecting to the two sublattices, we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su-Schrieffer-Heeger model or the Rice-Mele model whose hopping amplitudes depend on the quasimomentum. In this way, the topological phases can be efficiently extracted through winding numbers. We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.
|
Received: 28 March 2024
Revised: 27 May 2024
Accepted manuscript online:
|
PACS:
|
02.40.-k
|
(Geometry, differential geometry, and topology)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: This work was supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LR22A040001 and LY21A040004) and the National Natural Science Foundation of China (Grant Nos. 12074342 and 11835011). |
Corresponding Authors:
Chao Gao
E-mail: gaochao@zjnu.edu.cn
|
Cite this article:
Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超) Topological phases and edge modes of an uneven ladder 2024 Chin. Phys. B 33 080202
|
[1] Chen X, Gu Z C, Liu Z X and Wen X G 2012 Science 338 1604 [2] Essin A M and Gurarie V 2011 Phys. Rev. B 84 125132 [3] Mong R S and Shivamoggi V 2011 Phys. Rev. B 83 125109 [4] Rhim J W, Behrends J and Bardarson J H 2017 Phys. Rev. B 95 035421 [5] Rhim J W, Bardarson J H and Slager R J 2018 Phys. Rev. B 97 115143 [6] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698 [7] Asbóth J K, Oroszlány L and Pályi A 2016 A short course on topological insulators (Cham: Springer International Publishing Switzerland) p. 21 [8] Zak J 1989 Phys. Rev. Lett. 62 2747 [9] Rice M J and Mele E J 1982 Phys. Rev. Lett. 49 1455 [10] Lu M X and Deng W J 2019 Acta. Phys. Sin. 68 120301 (in Chinese) [11] Lin Y T, Kennes D M, Pletyukhov M, Weber C S, Schoeller H and Meden V 2020 Phys. Rev. B 102 085122 [12] De Léséleuc S, Lienhard V, Scholl P, Barredo D, Weber S, Lang N, Büchler H P, Lahaye T and Browaeys A 2019 Science 365 775 [13] Nersesyan A A 2020 Phys. Rev. B 102 045108 [14] Padhan A, Mondal S, Vishveshwara S and Mishra T 2024 Phys. Rev. B 109 085120 [15] Li X and Liu W V 2013 Phys. Rev. A 87 063605 [16] Li X, Zhao E and Vincent Liu W 2013 Nat. Commun. 4 1523 [17] Kang J H, Han J H and Shin Y i 2018 Phys. Rev. Lett. 121 150403 [18] Chen S, Büttner H and Voit J 2003 Phys. Rev. B 67 054412 [19] Liu Z X, Yang Z B, Han Y J, Yi W and Wen X G 2012 Phys. Rev. B 86 195122 [20] Schmidiger D, Mühlbauer S, Zheludev A, Bouillot P, Giamarchi T, Kollath C, Ehlers G and Tsvelik A M 2013 Phys. Rev. B 88 094411 [21] Zou H, Zhao E, Guan X W and Liu W V 2019 Phys. Rev. Lett. 122 180401 [22] An F A, Meier E J and Gadway B 2018 Phys. Rev. X 8 031045 [23] Xu X, Wang J, Dai J, Mao R, Cai H, Zhu S Y and Wang D W 2022 Phys. Rev. Lett. 129 273603 [24] Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J and Rey A M 2016 Phys. Rev. Lett. 116 035301 [25] Li Y, Zhang J, Wang Y, Du H, Wu J, Liu W, Mei F, Ma J, Xiao L and Jia S 2022 Light Sci. Appl. 11 13 [26] Jünemann J, Piga A, Ran S J, Lewenstein M, Rizzi M and Bermudez A 2017 Phys. Rev. X 7 031057 [27] He Y, Mao R, Cai H, Zhang J X, Li Y, Yuan L, Zhu S Y and Wang D W 2021 Phys. Rev. Lett. 126 103601 [28] Hung J S C, Busnaina J H, Chang C W S, Vadiraj A M, Nsanzineza I, Solano E, Alaeian H, Rico E and Wilson C M 2021 Phys. Rev. Lett. 127 100503 [29] Atala M, Aidelsburger M, Lohse M, Barreiro J T, Paredes B and Bloch I 2014 Nat. Phys. 10 588 [30] Cai H, Liu J, Wu J, He Y, Zhu S Y, Zhang J X and Wang D W 2019 Phys. Rev. Lett. 122 023601 [31] Dutt A, Yuan L, Yang K Y, Wang K, Buddhiraju S, Vučkovivć J and Fan S 2022 Nat. Commun. 13 3377 [32] Li Y, Du H, Wang Y, Liang J, Xiao L, Yi W, Ma J and Jia S 2023 Nat. Commun. 14 7560 [33] Lacki M, Pichler H, Sterdyniak A, Lyras A, Lembessis V E, Al-Dossary O, Budich J C and Zoller P 2016 Phys. Rev. A 93 013604 [34] Han J H, Kang J H and Shin Y 2019 Phys. Rev. Lett. 122 065303 [35] Yan Y, Zhang S L, Choudhury S and Zhou Q 2019 Phys. Rev. Lett. 123 260405 [36] Zhang R, Yan Y and Zhou Q 2021 Phys. Rev. Lett. 126 193001 [37] Fabre A, Bouhiron J B, Satoor T, Lopes R and Nascimbene S 2022 Phys. Rev. Lett. 128 173202 [38] Li C H, Yan Y, Feng S W, Choudhury S, Blasing D B, Zhou Q and Chen Y P 2022 PRX Quantum 3 010316 [39] Zhou T W, Cappellini G, Tusi D, Franchi L, Parravicini J, Repellin C, Greschner S, Inguscio M, Giamarchi T, Filippone M, Catani J and Fallani L 2023 Science 381 427 [40] Zhou B Z and Zhou B 2016 Chin. Phys. B 25 107401 [41] Liu J S, Han Y Z and Liu C S 2019 Chin. Phys. B 28 100304 [42] Liang H Q and Li L 2022 Chin. Phys. B 31 010310 [43] An F A, Meier E J and Gadway B 2017 Sci. Adv. 3 e1602685 [44] LeBlanc L J and Thywissen J H 2007 Phys. Rev. A 75 053612 [45] Arora B, Safronova M S and Clark C W 2011 Phys. Rev. A 84 043401 [46] Wen K, Meng Z, Wang L, Chen L, Huang L, Wang P and Zhang J 2021 J. Opt. Soc. Am. B 38 3269 [47] Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C and Zhang J 2023 Nature 615 231 [48] Su W P and Schrieffer J R 1981 Phys. Rev. Lett. 46 738 [49] Guo H and Chen S 2015 Phys. Rev. B 91 041402 [50] Alvarez V M and Coutinho-Filho M 2019 Phys. Rev. A 99 013833 [51] Anastasiadis A, Styliaris G, Chaunsali R, Theocharis G and Diakonos F K 2022 Phys. Rev. B 106 085109 [52] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795 [53] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795 [54] Jiao Z Q, Longhi S, Wang X W, Gao J, Zhou W H, Wang Y, Fu Y X, Wang L, Ren R J, Qiao L F and Jin X M 2021 Phys. Rev. Lett. 127 147401 [55] Huckle T K, Waldherr K and Schulte-Herbrüggen T 2013 Lin. Multilin. Alg. 61 91 [56] Palumbo G 2023 arXiv:2312.13907 [cond-mat] [57] Li Y, Du H, Wang Y, Liang J, Xiao L, Yi W, Ma J and Jia S 2023 Nat. Commun. 14 7560 [58] Velasco C G and Paredes B 2019 arXiv:1907.11460 [condmat] [59] Kudin K N, Car R and Resta R 2007 J. Chem. Phys. 126 234101 [60] Vanderbilt D and King-Smith R 1993 Phys. Rev. B 48 4442 [61] Baldereschi A, Baroni S and Resta R 1988 Phys. Rev. Lett. 61 734 [62] Citro R 2016 Nat. Phys. 12 288 [63] Feshbach H 1958 Ann. Phys. 5 357 [64] Feshbach H 1962 Ann. Phys. 19 287 [65] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|