Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086103    DOI: 10.1088/1674-1056/ad531e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of interlayer bonded bilayer graphene on friction

Yao-Long Li(李耀隆)1,2, Zhen-Guo Tian(田振国)1,2, Hai-Feng Yin(尹海峰)1,2, and Ren-Liang Zhang(张任良)1,2,†
1 Hebei Key Laboratory of Mechanical Reliability for Heavy Equipment and Large Structures, Yanshan University, Qinhuangdao 066004, China;
2 School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, China
Abstract  We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics. The results show that the presence of the interlayer covalent bonds due to the local sp$^{3}$ hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%, depending on the coverage of interlayer sp$^{3}$ bonds and normal loads. For a certain coverage of interlayer sp$^{3}$ bonds, when the normal load of the slider reaches a certain value, the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider. Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds, which may be useful for applications of friction related graphene based nanodevices.
Keywords:  nanoscale friction      molecular dynamic simulation      bilayer graphene      interlayer covalent bond  
Received:  11 March 2024      Revised:  09 May 2024      Accepted manuscript online:  03 June 2024
PACS:  61.48.Gh (Structure of graphene)  
  62.20.Qp (Friction, tribology, and hardness)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: The project supported by the Doctor Fund and the Program of independent Research for Young Teachers of Yanshan University (Grant Nos. B919 and 020000534).
Corresponding Authors:  Ren-Liang Zhang     E-mail:  zhrleo@ysu.edu.cn

Cite this article: 

Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良) Effect of interlayer bonded bilayer graphene on friction 2024 Chin. Phys. B 33 086103

[1] Peng Y, Li J, Tang X, Liu B, Chen X and Bai L 2020 Tribol. Lett. 68 22
[2] Hanaor D A, Gan Y and Einav I 2016 Tribol. Int. 93 229
[3] Li Y, Li S, Wang M and Zhang R 2024 Chin. Phys. B 33 046101
[4] Holmberg K and Erdemir A 2017 Friction 5 263
[5] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[6] Berman D, Erdemir A and Sumant A V 2014 Mater. Today 17 31
[7] Sun J and Du S 2019 RSC Adv. 9 40642
[8] Berman D, Erdemir A and Sumant A V 2014 Appl. Phys. Lett. 105 231907
[9] Verhoeven G S, Dienwiebel M and Frenken J W 2004 Phys. Rev. B 70 165418
[10] Liu Z, Yang J, Grey F, Liu J Z, Liu Y, Wang Y, Yang Y, Cheng Y and Zheng Q 2012 Phys. Rev. Lett. 108 205503
[11] Popov A M, Lebedeva I V, Knizhnik A A, Lozovik Y E and Potapkin B V 2011 Phys. Rev. B 84 245437
[12] Kang J W, Park J and Kwon O K 2014 Physica E 58 88
[13] Kim S Y, Cho S Y, Kim K S and Kang J W 2013 Physica E 50 44
[14] Hwang H J and Kang J W 2014 Physica E 56 17
[15] Jeong J H, Kang S, Kim N, Joshi R and Lee G H 2022 Phys. Chem. Chem. Phys. 24 10684
[16] Yu M, Chen C, Liu Q, Mattioli C, Sang H, Shi G, Huang W, Shen K, Li Z and Ding P 2020 Nat. Chem. 12 1035
[17] Chogani A, Moosavi A, Bagheri Sarvestani A and Shariat M 2020 J. Mol. Liq. 301 112478
[18] Li Z, Wang Y, Ma M, Ma H, Hu W, Zhang X, Zhuge Z, Zhang S, Luo K, Gao Y, Sun L, Soldatov A V, Wu Y, Liu B, Li B, Ying P, Zhang Y, Xu B, He J, Yu D, Liu Z, Zhao Z, Yue Y, Tian Y and Li X 2023 Nat. Mater. 22 42
[19] Ko J H, Kwon S, Byun I S, Choi J S, Park B H, Kim Y H and Park J Y 2013 Tribol. Lett. 50 137
[20] Kwon S, Ko J H, Jeon K J, Kim Y H and Park J Y 2012 Nano Lett. 12 6043
[21] Fessler G, Eren B, Gysin U, Glatzel T and Meyer E 2014 Appl. Phys. Lett. 104 041910
[22] Dong Y, Wu X and Martini A 2013 Nanotechnology 24 375701
[23] Li Q, Liu X Z, Kim S P, Shenoy V B, Sheehan P E, Robinson J T and Carpick R W 2014 Nano Lett. 14 5212
[24] Tang C, Zhang Y, Guo W and Chen C 2010 J. Phys. Chem. C 114 18091
[25] Martins L G P, Matos M J, Paschoal A R, Freire P T, Andrade N F, Aguiar A L, Kong J, Neves B R, de Oliveira A B and Mazzoni M S 2017 Nat. Commun. 8 96
[26] Peng B, Locascio M, Zapol P, Li S, Mielke S L, Schatz G C and Espinosa H D 2008 Nat. Nanotechnol. 3 626
[27] Kanasaki J, Inami E, Tanimura K, Ohnishi H and Nasu K 2009 Phys. Rev. Lett. 102 087402
[28] Kvashnin A G, Chernozatonskii L A, Yakobson B I and Sorokin P B 2014 Nano Lett. 14 676
[29] Tang C, Zhang Y, Guo W and Chen C 2010 J. Phys. Chem. C 114 18091
[30] Chien S K, Yang Y T and Chen C K 2011 Appl. Phys. Lett. 98 033107
[31] Li Y, Li Z, Li S and Zhang R 2023 Acta Phys. Sin. 72 243101 (in Chinese)
[32] Xia Z, Guduru P and Curtin W 2007 Phys. Rev. Lett. 98 245501
[33] Albarakaty H A 2016 US Patents No. 9 318 348 B2 [2016-04-19]
[34] Guo T, Sha Z D, Liu X, Zhang G, Guo T, Pei Q X and Zhang Y W 2015 Appl. Phys. A 120 1275
[35] Chang T, Zhang H, Guo Z, Guo X and Gao H 2015 Phys. Rev. Lett. 114 015504
[36] Wang K, Qu C, Wang J, Ouyang W, Ma M and Zheng Q 2019 ACS Appl. Mater. Interfaces 11 36169
[37] Chen J, Gao Y, Wang C, Zhang R, Zhao H and Fang H 2015 J. Phys. Chem. C 119 17362
[38] Zhang R, Li S, Li Y and Wang M 2022 J. Nano Res. 74 97
[39] Wang K, Ouyang W, Cao W, Ma M and Zheng Q 2019 Nanoscale 11 2186
[40] Kim H J and Chung K H 2020 Appl. Surf. Sci. 534 147629
[41] Yitian, Peng, Xingzhong, Zeng, Lei, Liu, Xingan, Cao, Kun and Zou 2017 Carbon 124 541
[42] Smolyanitsky A, Killgore J P and Tewary V K 2012 Phys. Rev. B 85 035412
[43] Chen X and Li J 2020 Carbon 158 1
[44] Li J, Li J and Luo J 2018 Adv. Sci. 5 1800810
[45] Kim W K and Falk M L 2009 Phys. Rev. B 80 235428
[46] Van Wijk M, Dienwiebel M, Frenken J and Fasolino A 2013 Phys. Rev. B 88 235423
[47] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[48] Hod O, Meyer E, Zheng Q and Urbakh M 2018 Nature 563 485
[49] Zhang H and Chang T 2018 Nanoscale 10 2447
[1] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[2] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[3] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[4] Valley-dependent transport in a mescoscopic twisted bilayer graphene device
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017205.
[5] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[6] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[7] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[8] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[9] Atomistic simulations of the lubricative mechanism of a nano-alkane lubricating film between two layers of Cu-Zn alloy
Jing Li(李京), Peng Zhu(朱鹏), Yuan-Yuan Sheng(盛圆圆), Lin Liu(刘麟), and Yong Luo(罗勇). Chin. Phys. B, 2021, 30(8): 080205.
[10] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[11] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[12] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[13] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[14] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[15] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .