CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Performance optimization of the neutron-sensitive image intensifier used in neutron imaging |
Jinhao Tan(谭金昊)1,2,3, Yushou Song(宋玉收)1,†, Jianrong Zhou(周健荣)2,3,‡, Wenqin Yang(杨文钦)2,3, Xingfen Jiang(蒋兴奋)2,3, Jie Liu(刘杰)1,2,3, Chaoyue Zhang(张超月)1,2,3, Xiaojuan Zhou(周晓娟)2,3, Yuanguang Xia(夏远光)2,3, Shulin Liu(刘术林)3, Baojun Yan(闫保军)3, Hui Liu(刘辉)4, Songlin Wang(王松林)2,3, Yubin Zhao(赵豫斌)2,3, Jian Zhuang(庄建)2,3, Zhijia Sun(孙志嘉)2,3, and Yuanbo Chen(陈元柏)2,3 |
1 Harbin Engineering University, Harbin 150000, China; 2 Spallation Neutron Source Science Center, Dongguan 523803, China; 3 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 4 Key Laboratory of China Building Materials Industry for Special Photoelectric Materials, Institute of Special Glass Fiber and Optoelectronic Functional Materials, China Building Materials Academy, Beijing 100024, China |
|
|
Abstract As a non-destructive testing technology, neutron imaging plays an important role in various fields, including material science, nuclear engineering, and fundamental science. An imaging detector with a neutron-sensitive image intensifier has been developed and demonstrated to achieve good spatial resolution and timing resolution. However, the influence of the working voltage on the performance of the neutron-sensitive imaging intensifier has not been studied. To optimize the performance of the neutron-sensitive image intensifier at different voltages, experiments have been performed at the China Spallation Neutron Source (CSNS) neutron beamline. The change in the light yield and imaging quality with different voltages has been acquired. It is shown that the image quality benefits from the high gain of the microchannel plate (MCP) and the high accelerating electric field between the MCP and the screen. Increasing the accelerating electric field is more effective than increasing the gain of MCPs for the improvement of the imaging quality. Increasing the total gain of the MCP stack can be realized more effectively by improving the gain of the standard MCP than that of the nMCP. These results offer a development direction for image intensifiers in the future.
|
Received: 27 January 2024
Revised: 14 April 2024
Accepted manuscript online:
|
PACS:
|
61.05.Tv
|
(Neutron imaging; neutron tomography)
|
|
29.25.Dz
|
(Neutron sources)
|
|
29.40.Wk
|
(Solid-state detectors)
|
|
28.20.Pr
|
(Neutron imaging; neutron tomography)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2023YFC2206502 and 2021YFA1600703), the National Natural Science Foundation of China (Grant Nos. 12175254 and 12227810), and the Guangdong- HongKong-Macao Joint Laboratory for Neutron Scattering Science and Technology. |
Corresponding Authors:
Yushou Song, Jianrong Zhou
E-mail: songyushou80@163.com;zhoujr@ihep.ac.cn
|
Cite this article:
Jinhao Tan(谭金昊), Yushou Song(宋玉收), Jianrong Zhou(周健荣), Wenqin Yang(杨文钦), Xingfen Jiang(蒋兴奋), Jie Liu(刘杰), Chaoyue Zhang(张超月), Xiaojuan Zhou(周晓娟), Yuanguang Xia(夏远光), Shulin Liu(刘术林), Baojun Yan(闫保军), Hui Liu(刘辉), Songlin Wang(王松林), Yubin Zhao(赵豫斌), Jian Zhuang(庄建), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏) Performance optimization of the neutron-sensitive image intensifier used in neutron imaging 2024 Chin. Phys. B 33 086102
|
[1] Su Y H, Kenichi O, Takenao S, Tetsuya K, Takashi H, Osamu I, Yoshitaka M and Yo T 2021 Sci. Rep. 11 4155 [2] Anton S T, John R, Takenao S, Winfried K, Adrian S L and Sven C V 2017 Sci. Rep. 7 40759 [3] Allman B E, McMahon P J, Nugent K A, Paganin D, Jacobson D L, Arif M and Werner S A 2000 Nature 408 158 [4] Strobl M, Treimer W, Kardjilov N, Hilger A and Zabler S 2008 Nucl. Instrum. Methods Phys. Res. A 266 181 [5] Jacopo V, Ralph P H, Marc R, Muriel D S, Manuel M, Pierre B, Markus S, Patrick H, Lothar H, Uwe F, Wolfgang T, Florian M P and Christian G 2019 Nat. Commun. 10 3788 [6] Manke I, Kardjilov N, Schäfer R, Hilger A, Grothausmann R, Strobl M, Dawson M, Grünzweig C, Tötzke C, David C, Kupsch A, Lange A, Hentschel M P and Banhart J 2015 Phys. Procedia 69 404 [7] Jiang X F, Xiu Q L, Zhou J R, Yang J Q, Tan J H, Yang W Q, Zhang L J, Xia Y G, Zhou X J, Zhou J J, Zhu L, Teng H Y, Yang G A, Song Y S, Sun Z J and Chen Y B 2021 Nucl. Eng. Technol. 53 1942 [8] Daniel S H, Jacob M L, Elias B and David L J 2017 Nucl. Instrum. Methods Phys. Res. A 866 9 [9] Pavel T and Eberhard H L 2016 J. Phys.: Conf. Ser. 746 012004 [10] Yang J Q, Zhou J R, Jiang X F, Tan J H, Zhang L J, Zhou J J, Zhou X J, Yang W Q, Xia Y G, Chen J, Sun X L, Zhang Q H, Li J, Sun Z J and Chen Y B 2021 Nucl. Instrum. Methods Phys. Res. A 1000 165222 [11] Segawa M, Kai T, Sakai T, Ooi M and Kureta M 2013 Nucl. Instrum. Methods Phys. Res. A 697 77 [12] Mizutani R, Abe Y, Arikawa Y, Nishibata J, Yogo A, Mirfayzi S R, Nishimura H, Mima K, Fujioka S, Nakai M, Shiraga H and Kodama R 2020 High Energy Density Phys. 36 100833 [13] Tan J H, Song Y S, Zhou J R, Yang W Q, Jiang X F, Zhou X J, Xia Y G, Liu S L, Yan B J, Liu H, Wang S L, Sun Z J, Wei Y D and Chen Y B 2024 JINST 19 P01015 [14] Losko A S, Han Y, Schillinger B, Tartaglione A, Morgano M, Strobl M, Long J, Tremsin A S and Schulz M 2021 Sci. Rep. 11 21360 [15] Wei J, Chen H S and Chen Y W, et. al. 2009 Nucl. Instrum. Methods Phys. Res. A 600 10 [16] Tan J H, Song Y S, Zhou J R, Zhou J J, Jiang X F, Zhou X J, Yang W Q, Xia Y G, Liu S L, Yan B J, Liu H, Wang S L, Sun Z J and Chen Y B 2023 Nucl. Instrum. Methods Phys. Res. A 1047 167828 [17] Sysoeva E, Tarasov V and Zelenskaya O 2002 Nucl. Instrum. Methods Phys. Res. A 486 67 [18] Xu Y L, Xu T, Liu H, Cai H and Wang C L 2017 Int. J. Mass Spectrom. 421 234 [19] Finocchiaro V, Aliotta F, Tresoldi D, Ponterio R C, Vasi C S and Salvato G 2013 Rev. Sci. Instrum. 84 093701 [20] Yang T, Zhou J R, Zhou X J, Zhu L, Zhu H Y, Zhou J J, Xia Y G, Wei Y D, Jiang X F, Yang W Q, Yang G A, Wang S L, Xie Y G, Sun Z J, Ouyang Q, Zhu J T, and Chen Y B 2022 IEEE Trans. Nucl. Sci. 69 68 [21] Zhou J J, Zhou J R, Zhou X J, Zhu L, Yang W Q, Xu H, Guan B J, Wang S L, Yang J Q, Yang G A, Xie Y G, Zhang Y, Ding B W, Hu B T, Sun Z J, Duan L M and Chen Y B 2022 Nucl. Instrum. Methods Phys. Res. A 1024 166076 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|