Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086102    DOI: 10.1088/1674-1056/ad47ad
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Performance optimization of the neutron-sensitive image intensifier used in neutron imaging

Jinhao Tan(谭金昊)1,2,3, Yushou Song(宋玉收)1,†, Jianrong Zhou(周健荣)2,3,‡, Wenqin Yang(杨文钦)2,3, Xingfen Jiang(蒋兴奋)2,3, Jie Liu(刘杰)1,2,3, Chaoyue Zhang(张超月)1,2,3, Xiaojuan Zhou(周晓娟)2,3, Yuanguang Xia(夏远光)2,3, Shulin Liu(刘术林)3, Baojun Yan(闫保军)3, Hui Liu(刘辉)4, Songlin Wang(王松林)2,3, Yubin Zhao(赵豫斌)2,3, Jian Zhuang(庄建)2,3, Zhijia Sun(孙志嘉)2,3, and Yuanbo Chen(陈元柏)2,3
1 Harbin Engineering University, Harbin 150000, China;
2 Spallation Neutron Source Science Center, Dongguan 523803, China;
3 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 Key Laboratory of China Building Materials Industry for Special Photoelectric Materials, Institute of Special Glass Fiber and Optoelectronic Functional Materials, China Building Materials Academy, Beijing 100024, China
Abstract  As a non-destructive testing technology, neutron imaging plays an important role in various fields, including material science, nuclear engineering, and fundamental science. An imaging detector with a neutron-sensitive image intensifier has been developed and demonstrated to achieve good spatial resolution and timing resolution. However, the influence of the working voltage on the performance of the neutron-sensitive imaging intensifier has not been studied. To optimize the performance of the neutron-sensitive image intensifier at different voltages, experiments have been performed at the China Spallation Neutron Source (CSNS) neutron beamline. The change in the light yield and imaging quality with different voltages has been acquired. It is shown that the image quality benefits from the high gain of the microchannel plate (MCP) and the high accelerating electric field between the MCP and the screen. Increasing the accelerating electric field is more effective than increasing the gain of MCPs for the improvement of the imaging quality. Increasing the total gain of the MCP stack can be realized more effectively by improving the gain of the standard MCP than that of the nMCP. These results offer a development direction for image intensifiers in the future.
Keywords:  neutron detector      neutron imaging      microchannel plate      image intensifier  
Received:  27 January 2024      Revised:  14 April 2024      Accepted manuscript online:  06 May 2024
PACS:  61.05.Tv (Neutron imaging; neutron tomography)  
  29.25.Dz (Neutron sources)  
  29.40.Wk (Solid-state detectors)  
  28.20.Pr (Neutron imaging; neutron tomography)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2023YFC2206502 and 2021YFA1600703), the National Natural Science Foundation of China (Grant Nos. 12175254 and 12227810), and the Guangdong- HongKong-Macao Joint Laboratory for Neutron Scattering Science and Technology.
Corresponding Authors:  Yushou Song, Jianrong Zhou     E-mail:  songyushou80@163.com;zhoujr@ihep.ac.cn

Cite this article: 

Jinhao Tan(谭金昊), Yushou Song(宋玉收), Jianrong Zhou(周健荣), Wenqin Yang(杨文钦), Xingfen Jiang(蒋兴奋), Jie Liu(刘杰), Chaoyue Zhang(张超月), Xiaojuan Zhou(周晓娟), Yuanguang Xia(夏远光), Shulin Liu(刘术林), Baojun Yan(闫保军), Hui Liu(刘辉), Songlin Wang(王松林), Yubin Zhao(赵豫斌), Jian Zhuang(庄建), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏) Performance optimization of the neutron-sensitive image intensifier used in neutron imaging 2024 Chin. Phys. B 33 086102

[1] Su Y H, Kenichi O, Takenao S, Tetsuya K, Takashi H, Osamu I, Yoshitaka M and Yo T 2021 Sci. Rep. 11 4155
[2] Anton S T, John R, Takenao S, Winfried K, Adrian S L and Sven C V 2017 Sci. Rep. 7 40759
[3] Allman B E, McMahon P J, Nugent K A, Paganin D, Jacobson D L, Arif M and Werner S A 2000 Nature 408 158
[4] Strobl M, Treimer W, Kardjilov N, Hilger A and Zabler S 2008 Nucl. Instrum. Methods Phys. Res. A 266 181
[5] Jacopo V, Ralph P H, Marc R, Muriel D S, Manuel M, Pierre B, Markus S, Patrick H, Lothar H, Uwe F, Wolfgang T, Florian M P and Christian G 2019 Nat. Commun. 10 3788
[6] Manke I, Kardjilov N, Schäfer R, Hilger A, Grothausmann R, Strobl M, Dawson M, Grünzweig C, Tötzke C, David C, Kupsch A, Lange A, Hentschel M P and Banhart J 2015 Phys. Procedia 69 404
[7] Jiang X F, Xiu Q L, Zhou J R, Yang J Q, Tan J H, Yang W Q, Zhang L J, Xia Y G, Zhou X J, Zhou J J, Zhu L, Teng H Y, Yang G A, Song Y S, Sun Z J and Chen Y B 2021 Nucl. Eng. Technol. 53 1942
[8] Daniel S H, Jacob M L, Elias B and David L J 2017 Nucl. Instrum. Methods Phys. Res. A 866 9
[9] Pavel T and Eberhard H L 2016 J. Phys.: Conf. Ser. 746 012004
[10] Yang J Q, Zhou J R, Jiang X F, Tan J H, Zhang L J, Zhou J J, Zhou X J, Yang W Q, Xia Y G, Chen J, Sun X L, Zhang Q H, Li J, Sun Z J and Chen Y B 2021 Nucl. Instrum. Methods Phys. Res. A 1000 165222
[11] Segawa M, Kai T, Sakai T, Ooi M and Kureta M 2013 Nucl. Instrum. Methods Phys. Res. A 697 77
[12] Mizutani R, Abe Y, Arikawa Y, Nishibata J, Yogo A, Mirfayzi S R, Nishimura H, Mima K, Fujioka S, Nakai M, Shiraga H and Kodama R 2020 High Energy Density Phys. 36 100833
[13] Tan J H, Song Y S, Zhou J R, Yang W Q, Jiang X F, Zhou X J, Xia Y G, Liu S L, Yan B J, Liu H, Wang S L, Sun Z J, Wei Y D and Chen Y B 2024 JINST 19 P01015
[14] Losko A S, Han Y, Schillinger B, Tartaglione A, Morgano M, Strobl M, Long J, Tremsin A S and Schulz M 2021 Sci. Rep. 11 21360
[15] Wei J, Chen H S and Chen Y W, et. al. 2009 Nucl. Instrum. Methods Phys. Res. A 600 10
[16] Tan J H, Song Y S, Zhou J R, Zhou J J, Jiang X F, Zhou X J, Yang W Q, Xia Y G, Liu S L, Yan B J, Liu H, Wang S L, Sun Z J and Chen Y B 2023 Nucl. Instrum. Methods Phys. Res. A 1047 167828
[17] Sysoeva E, Tarasov V and Zelenskaya O 2002 Nucl. Instrum. Methods Phys. Res. A 486 67
[18] Xu Y L, Xu T, Liu H, Cai H and Wang C L 2017 Int. J. Mass Spectrom. 421 234
[19] Finocchiaro V, Aliotta F, Tresoldi D, Ponterio R C, Vasi C S and Salvato G 2013 Rev. Sci. Instrum. 84 093701
[20] Yang T, Zhou J R, Zhou X J, Zhu L, Zhu H Y, Zhou J J, Xia Y G, Wei Y D, Jiang X F, Yang W Q, Yang G A, Wang S L, Xie Y G, Sun Z J, Ouyang Q, Zhu J T, and Chen Y B 2022 IEEE Trans. Nucl. Sci. 69 68
[21] Zhou J J, Zhou J R, Zhou X J, Zhu L, Yang W Q, Xu H, Guan B J, Wang S L, Yang J Q, Yang G A, Xie Y G, Zhang Y, Ding B W, Hu B T, Sun Z J, Duan L M and Chen Y B 2022 Nucl. Instrum. Methods Phys. Res. A 1024 166076
[1] Silicon photomultiplier based scintillator thermal neutron detector for China Spallation Neutron Source (CSNS)
Xiu-Ping Yue(岳秀萍), Zhi-Fu Zhu(朱志甫), Bin Tang(唐彬), Chang Huang(黄畅), Qian Yu(于潜), Shao-Jia Chen(陈少佳), Xiu-Ku Wang(王修库), Hong Xu(许虹), Shi-Hui Zhou(周诗慧),Xiao-Jie Cai(蔡小杰), Hao Yang(杨浩), Zhi-Yong Wan(万志勇),Zhi-Jia Sun(孙志嘉), and Yun-Tao Liu(刘云涛). Chin. Phys. B, 2023, 32(9): 090402.
[2] Performance optimization of scintillator neutron detectors for EMD in CSNS
Xiaojie Cai(蔡小杰), Qian Yu(于潜), Chang Huang(黄畅), Bin Tang(唐彬), Shihui Zhou(周诗慧), Xiaohu Wang(王小胡), Xiuping Yue(岳秀萍), and Zhijia Sun(孙志嘉). Chin. Phys. B, 2023, 32(11): 110701.
[3] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[4] Simulation of GaN micro-structured neutron detectors for improving electrical properties
Xin-Lei Geng(耿昕蕾), Xiao-Chuan Xia(夏晓川), Huo-Lin Huang(黄火林), Zhong-Hao Sun(孙仲豪), He-Qiu Zhang(张贺秋), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(2): 027201.
[5] Imaging properties of a tetra wedge readout
Liu Yong-An (刘永安), Yan Qiu-Rong (鄢秋荣), Sai Xiao-Feng (赛小锋), Wei Yong-Lin (韦永林), Sheng Li-Zhi (盛立志), Yang Hao (杨颢), Hu Hui-Jun (胡慧君), Zhao Bao-Sheng (赵宝升). Chin. Phys. B, 2011, 20(6): 068503.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .