|
|
Effect of pump-1 laser on Autler–Townes splitting in photoelectron spectrum of K2 molecule |
Guo Wei (郭玮)a, Lu Xing-Qiang (路兴强)b, Wang Xin-Lin (王新林)a, Yao Hong-Bin (姚洪斌)c |
a School of Electric Engineering, University of South China, Hengyang 421001, China;
b School of Nuclear Science and Technology, University of South China, Hengyang 421001, China;
c Department of Basic Courses, Xinjiang Institute of Engineering, Urumqi 830091, China |
|
|
Abstract We theoretically investigate the Autler-Townes (AT) splitting in the photoelectron spectrum of four-level ladder K2 molecule driven by a pump 1-pump 2-probe pulse via employing the time-dependent wave packet approach. The effects of the pump-1 laser intensity and wavelength on AT splitting are studied for the first time. The magnitude of AT splitting increases with increasing the pump-1 laser intensity. The triple splitting with asymmetric profile occurs due to the nonresonant excitation. The triple structure is transformed into a double structure (near-resonant region), and then becomes a peak (far-off resonant region) progressively as the pump-1 laser is detuned from the resonance wavelength, which can be explained in terms of the asymmetric excitation/population of dressed states. The splitting between adjacent peaks and the splitting between the two sideband peaks in the triplet do not change with the pump-1 pulse wavelength. The three peaks shift toward lower energy with the same shift 1/4*Δ1 as the pump-1 wavelength changes in near-resonant region. The asymptotic behaviors of AT splitting with the pump-1 laser intensity are interesting in the threshold points of the near-resonant region and the far-off resonant region.
|
Received: 30 July 2014
Revised: 12 September 2014
Accepted manuscript online:
|
PACS:
|
33.60.+q
|
(Photoelectron spectra )
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41104094 and 11174119), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114324120002), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 12C0370), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars. |
Corresponding Authors:
Lu Xing-Qiang
E-mail: luxingqiang@163.com
|
Cite this article:
Guo Wei (郭玮), Lu Xing-Qiang (路兴强), Wang Xin-Lin (王新林), Yao Hong-Bin (姚洪斌) Effect of pump-1 laser on Autler–Townes splitting in photoelectron spectrum of K2 molecule 2015 Chin. Phys. B 24 013302
|
[1] |
Autler S H and Townes C H 1955 Phys. Rev. 100 703
|
[2] |
Wollenhaupt M, Assion A, Bazhan O, Horn Ch, Liese D, Sarpe-Tudoran Ch, Winter M and Baumert T 2003 Phys. Rev. A 68 015401
|
[3] |
Wollenhaupt M, Liese D, Prakelt A, Sarpe-Tudoran C and Baumert T 2006 Chem. Phys. Lett. 419 184
|
[4] |
Peng Y G and Zheng Y J 2008 Appl. Phys. Lett. 92 092120
|
[5] |
Peng Y G and Zheng Y J 2009 Phys. Rev. A 80 043831
|
[6] |
Sun Z G and Lou N Q 2003 Phys. Rev. Lett. 91 023002
|
[7] |
Yuan K J, Sun Z G, Cong S L and Lou N Q 2006 Phys. Rev. A 74 043421
|
[8] |
Liu Y F, Liu R Q and Ding J X 2009 Chin. Phys. Lett. 26 073301
|
[9] |
Yao H B and Zheng Y J 2012 Chin. Phys. B 21 023302
|
[10] |
Yao H B, Li W L, Zhang J and Peng M 2014 Acta Phys. Sin. 63 178201 (in Chinese)
|
[11] |
Wei C J, Suter D, Windsor A S M and Manson N B 1998 Phys. Rev. A 58 2310
|
[12] |
Han D A, Zeng Y G, Chen W C, Dong S G, Huang C Q, Zhu C Y and Liang P Y 2011 Commun. Theor. Phys. 55 671
|
[13] |
Sadeghi S M, Meyer J and Rastegar H 1997 Phys. Rev. A 56 3097
|
[14] |
Yang L J, Zhang L S, Zhuang Z H, Guo Q L and Fu G S 2008 Chin. Phys. B 17 2147
|
[15] |
Yang L J, Zhang L S, Li X L, Han L, Fu G S, Manson N B, Suter D and Wei C J 2005 Phys. Rev. A 72 053801
|
[16] |
Zhang L S, Li X L, Wang J, Yang L J, Feng X M, Li X W and Fu G S 2008 Acta Phys. Sin. 57 4921 (in Chinese)
|
[17] |
de Echaniz S R, Greentree A D, Durrant A V, Segal D M, Marangos J P and Vaccaro J A 2001 Phys. Rev. A 64 013812
|
[18] |
Wang D S and Zheng Y J 2011 Phys. Rev. A 83 013810
|
[19] |
Dutta B K and Mahapatra P K 2009 Phys. Scr. 79 065402
|
[20] |
Sandhya S N 2007 J. Phys. B 40 837
|
[21] |
Haque I and Singh M R 2007 J. Phys. 19 156229
|
[22] |
Meier C and Engel V 1994 Phys. Rev. Lett. 73 3207
|
[23] |
Meier C, Engel V and Manthe U 1998 J. Chem. Phys. 109 36
|
[24] |
Hu W H, Yuan K J, Han Y C, Shu C C and Cong S L 2007 Chin. Phys. Lett. 24 1556
|
[25] |
Hu W H, Yuan K J, Han Y C, Shu C C and Cong S L 2010 Inter. J. Quan. Chem. 110 1224
|
[26] |
Liu Y F, Liu R Q and Ding J X 2010 Chin. Phys. B 19 033301
|
[27] |
Yao H B and Zheng Y J 2011 Phys. Chem. Chem. Phys. 13 8900
|
[28] |
Zhang M, Tang T T and Zhang C M 2014 Acta Phys. Sin. 63 023302 (in Chinese)
|
[29] |
Nicole C, Bouchene M A, Meier C, Magnier S, Schreiber E and Girard B 1999 J. Chem. Phys. 111 7857
|
[30] |
Brixner T, Krampert G, Pfeifer T, Selle R and Gerber G 2004 Phys. Rev. Lett. 92 208301
|
[31] |
Schlesinger M, Mudrich M, Stienkemeier F and Strunz W T 2010 Chem. Phys. Lett. 490 245
|
[32] |
Magnier S and Millie Ph 1996 Phys. Rev. A 54 204
|
[33] |
Magnier S, Aubert-Frecon M and Allouche A R 2004 J. Chem. Phys. 121 1771
|
[34] |
Jtaij A, Allouche A R, Magnier S and Aubert-Frecon M 2008 Can. J. Phys. 86 1409
|
[35] |
Jraij A, Allouche A R, Magnier S and Aubert-Frecon M 2009 J. Chem. Phys. 130 244307
|
[36] |
Broyer M, Chevaleyre J, Delacretaz G, Martin S and Woste L 1983 Chem. Phys. Lett. 99 206
|
[37] |
Jong G, Li L, Whang T J, Stwalley W C, Coxon J A, Li M and Lyyra A M 1992 J. Mol. Spectrosc. 155 115
|
[38] |
Kowalczyck P, Kasahara S, Kabir Md H and Kato H 2003 J. Mol. Spectrosc. 220 162
|
[39] |
Ilyabaev E and Kaldor U 1993 J. Chem. Phys. 98 7126
|
[40] |
de Vivie-Riedle R, Kobe K, Manz J, Meyer W, Reischl B, Rutz S, Schreiber E and Woste L 1996 J. Phys. Chem. 100 7789
|
[41] |
Zhang H, Han K L, Zhao Y, He G Z and Lou N Q 1997 Chem. Phys. Lett. 271 204
|
[42] |
Xie T X, Zhao Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
|
[43] |
Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
|
[44] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[45] |
Du Z J, Zhang S G, Wu C J, Guan Y, Zhao W Y and Chang H 2010 Chin. Phys. Lett. 27 104202
|
[46] |
Wilson E A, Manson N B, Wei C and Yang L J 2005 Phys. Rev. A 72 063813
|
[47] |
Li X L, Liu H N and Yang Y 2011 Acta Opt. Sin. 31 0102001
|
[48] |
Zhang H B, Khadka U, Song J P, Zhang Y P and Xiao M 2011 EPL 93 23002
|
[49] |
Cardimona D A, Alsing P M, Mozer H and Rhodes C 2009 Phys. Rev. A 79 063817
|
[50] |
Manka A S, Doss h M, Narducci L M and Ru P 1991 Phys. Rev. A 43 3748
|
[51] |
Van Leeuwen M F, Parademetriou S and Stroud Jr C R 1996 Phys. Rev. A 53 990
|
[52] |
Papademetriou S, Van Leeuwen M F and Stroud Jr C R 996 Phys. Rev. A 53 997
|
[53] |
Chang R Y, Fang W C, He Z S, Ke B S, Chen P N and Tsai C C 2007 Phys. Rev. A 76 053420
|
[54] |
Zhu S Y, Narducci L M and Scully M O 1995 Phys. Rev. A 52 4791
|
[55] |
Singh M R 2008 J. Phys. B 41 135401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|