Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058403    DOI: 10.1088/1674-1056/ad34c6
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Thermal management by manipulating electromagnetic parameters

Yun Wang(王云)1,2, Di-Fei Liang(梁迪飞)1,2,†, Tian-Cheng Han(韩天成)1,2, and Long-Jiang Deng(邓龙江)1,2
1 National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 611731, China;
2 Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  Electromagnetic absorbing materials may convert electromagnetic energy into heat energy and dissipate it. However, in a high-power electromagnetic radiation environment, the temperature of the absorbing material rises significantly and even burns. It becomes critical to ensure electromagnetic absorption performance while minimizing temperature rise. Here, we systematically study the coupling mechanism between the electromagnetic field and the temperature field when the absorbing material is irradiated by electromagnetic waves. We find out the influence of the constitutive parameters of the absorbing materials (including uniform and non-uniform) on the temperature distribution. Finally, through a smart design, we achieve better absorption and lower temperature simultaneously. The accuracy of the model is affirmed as simulation results aligned with theoretical analysis. This work provides a new avenue to control the temperature distribution of absorbing materials.
Keywords:  multi-physics field      electromagnetic-thermal coupling      microwave absorption      high power application  
Received:  08 November 2023      Revised:  04 January 2024      Accepted manuscript online:  18 March 2024
PACS:  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  84.60.-h (Direct energy conversion and storage)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  91.60.Ki (Thermal properties)  
Corresponding Authors:  Di-Fei Liang     E-mail:  dfliang@uestc.edu.cn

Cite this article: 

Yun Wang(王云), Di-Fei Liang(梁迪飞), Tian-Cheng Han(韩天成), and Long-Jiang Deng(邓龙江) Thermal management by manipulating electromagnetic parameters 2024 Chin. Phys. B 33 058403

[1] Mo Z G 2019 Research on Broadband Power-Resistant Absorbing Structure Based on FSS (B.E. Dissertation) (Hunan: Hunan University of Science and Technology) (in Chinese)
[2] Chen Q, Chen X, Chen Z Z, Zhang B and Zheng Y Q 2019 AIP Adv. 9 015113
[3] Tang L, Wang J, Zhang B, Li C and Jin H H 2022 Compos. Sci. Technol. 223 109428
[4] Li Y G, Li N Y and Gao J 2014 J. Adv. Manuf. Technol. 70 591
[5] Choi W H, Choe H S and Nam Y W 2020 Compos. Part A Appl. Sci. Manuf. 138 106070
[6] Choe H S, Lee J S, Kweon J H, Nam Y W and Choi W H 2022 Compos. Struct. 283 115138
[7] Walker J P, Swaminathan V, Haynes A S and Grebel H 2019 Materials 12 2108
[8] Nuhiji B, Swait T, Bower M P, Green J E and Day R J 2019 Compos. Part B Eng. 163 769
[9] Xu X H, Wang X Q, Wei R and Du S Y 2016 Compos. Sci. Technol. 123 10
[10] Xu X H, Wang X Q, Liu W P, Zhang X, Li Z Z and Du S Y 2016 Compos. Sci. Technol. 97 316
[11] Hong Y D, Lin B Q, Li H, Dai H M, Zhu C J and Yao H 2016 Appl. Therm. Eng. 93 1145
[12] Lin B Q, Li H, Chen Z W, Zheng C S, Hong Y D and Wang Z 2017 Appl. Therm. Eng. 126 949
[13] Huang J X, Xu G, Liang Y P, Hu G Z and Chang P 2020 Fuel 266 117022
[14] Huang J X, Xu G, Hu G Z, Kizil M and Chen Z W 2018 Fuel Process. Technol. 177 237
[15] Payne K, Xu K, Choi J H and Lee J K 2021 IEEE Trans. Antennas Propag. 69 7624
[16] Payne K, Xu K, Choi J H and Lee J K 2018 IEEE Trans. Plasma Sci. 46 934
[17] Wang C, Zhou J H, Zhou T, Chen Y L and Song H H 2019 Mater. Rev. 33 84
[18] Gong P J, Liu L, Qi Y H, Yu W and Li F H 2017 IEEE Trans. Electromagn. Compat. 59 1748
[19] Chen Z and Rodrigues V 2014 IEEE Antennas Propag. Mag. 56 248
[20] Chen Z, Bayat H and Adhyapak A 2019 Antenna Measurement Techniques Association Symposium, October 6-11, 2019, San Diego, America, p. 1
[21] Adhyapak A and Chen Z 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity, July 28-August 28, 2020, America, p. 369
[22] Jain Y M, Dixit H V, Jadhav A R, Cheeran A N, Gupta V N and Sharma P K 2015 IEEE Bombay Section Symposium, September 10-11, 2015, Mumbai, India, p. 1
[23] Yin X F, Liu X N, Qin J Y and Du C L 2019 IOP Conf. Ser.: Mater. Sci. Eng. 608 012009
[24] Mishra R R and Sharma A K 2016 Compos. Part A Appl. Sci. Manuf. 81 78
[25] Fan B X, Xing L, Yang K X, Zhou F J, He Q M, Tong G X and Wu W H 2023 Chem. Eng. J. 451 138492
[1] Microwave absorption and bandwidth study of Y2Co17 rare earth soft magnetic alloy with easy-plane anisotropy
Yun-Guo Ma(马云国), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Hao Wang(王浩), Zhe Sun(孙哲), Cheng-Fa Tu(涂成发), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(8): 084202.
[2] Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites
Liang Qiao(乔亮), Cheng-Fa Tu(涂成发), Wei Wu(吴伟), Wen-Biao Wang(王文彪), Sheng-Yu Yang(杨晟宇), Sun Zhe(孙哲), Peng Wu(吴鹏), Jin-Bo Yang(杨金波), Chang-Sheng Wang(王常生), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(5): 054202.
[3] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[4] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[5] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[6] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[7] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[8] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[9] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[10] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[11] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[12] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀). Chin. Phys. B, 2014, 23(8): 088105.
[13] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜). Chin. Phys. B, 2014, 23(8): 088802.
[14] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua(彭志华), Gong Xue-Yu(龚学余), Peng Yan-Feng(彭延峰), Guo Yan-Chun(郭燕春), and Ning Yan-Tao(宁艳桃) . Chin. Phys. B, 2012, 21(7): 078102.
[15] Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites
Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸) . Chin. Phys. B, 2012, 21(3): 037601.
No Suggested Reading articles found!