Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058402    DOI: 10.1088/1674-1056/ad2f21
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tunable superconducting resonators via on-chip control of local magnetic field

Chen-Guang Wang(王晨光)1,2, Wen-Cheng Yue(岳文诚)1, Xuecou Tu(涂学凑)1, Tianyuan Chi(迟天圆)1, Tingting Guo(郭婷婷)1, Yang-Yang Lyu(吕阳阳)1, Sining Dong(董思宁)1,3, Chunhai Cao(曹春海)1, Labao Zhang(张蜡宝)1,4, Xiaoqing Jia(贾小氢)1,4, Guozhu Sun(孙国柱)1,4, Lin Kang(康琳)1,4, Jian Chen(陈健)1,2, Yong-Lei Wang(王永磊)1,2,3,†, Huabing Wang(王华兵)1,2,‡, and Peiheng Wu(吴培亨)1,2
1 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
2 Purple Mountain Laboratories, Nanjing 211111, China;
3 National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China;
4 Hefei National Laboratory, Hefei 230094, China
Abstract  Superconducting microwave resonators play a pivotal role in superconducting quantum circuits. The ability to fine-tune their resonant frequencies provides enhanced control and flexibility. Here, we introduce a frequency-tunable superconducting coplanar waveguide resonator. By applying electrical currents through specifically designed ground wires, we achieve the generation and control of a localized magnetic field on the central line of the resonator, enabling continuous tuning of its resonant frequency. We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator. This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.
Keywords:  superconducting resonator      NbN      kinetic inductance      tunable resonator  
Received:  22 February 2024      Revised:  26 February 2024      Accepted manuscript online:  01 March 2024
PACS:  84.40.Dc (Microwave circuits)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA0718802 and 2018YFA0209002), the National Natural Science Foundation of China (Grant Nos. 62274086, 62288101, 61971464, 62101243, and 11961141002), the Excellent Young Scholar Program of Jiangsu Province, China (Grant Nos. BK20200008 and BK20200060), the Outstanding Postdoctoral Program of Jiangsu Province, China, the Fundamental Research Funds for the Central Universities, and the Fund from Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves.
Corresponding Authors:  Yong-Lei Wang, Huabing Wang     E-mail:  yongleiwang@nju.edu.cn;hbwang@nju.edu.cn

Cite this article: 

Chen-Guang Wang(王晨光), Wen-Cheng Yue(岳文诚), Xuecou Tu(涂学凑), Tianyuan Chi(迟天圆), Tingting Guo(郭婷婷), Yang-Yang Lyu(吕阳阳), Sining Dong(董思宁), Chunhai Cao(曹春海), Labao Zhang(张蜡宝), Xiaoqing Jia(贾小氢), Guozhu Sun(孙国柱), Lin Kang(康琳), Jian Chen(陈健), Yong-Lei Wang(王永磊), Huabing Wang(王华兵), and Peiheng Wu(吴培亨) Tunable superconducting resonators via on-chip control of local magnetic field 2024 Chin. Phys. B 33 058402

[1] Day P K, LeDuc H G, Mazin B A, Vayonakis A and Zmuidzinas J 2003 Nature 425 817
[2] Zmuidzinas J 2012 Annu. Rev. Condens. Matter Phys. 3 169
[3] Castellanos-Beltrana M A and Lehnert K W 2007 Appl. Phys. Lett. 91 083509
[4] Chaudhuri S, Li D, Irwin K D, Bockstiegel C, Hubmayr J, Ullom J N, Vissers M R and Gao J 2017 Appl. Phys. Lett. 110 152601
[5] Tholén E A, Ergül A, Doherty E M, Weber F M, Grégis F and Haviland D B 2007 Appl. Phys. Lett. 90 253509
[6] Eom1 B H, Day P K, LeDuc H G and Zmuidzinas J 2012 Nat. Phys. 8 623
[7] Stoutimore M J A, Khalil M S, Lobb C J and Osborn K D 2012 Appl. Phys. Lett. 101 062602
[8] Luomahaara J, Vesterinen V, Grõnberg L and Hassel J 2014 Nat. Commun. 5 4872
[9] Pierre M, Svensson I, Sathyamoorthy S R, Johansson G and Delsing P 2014 Appl. Phys. Lett. 104 232604
[10] Wang Z L, Zhong Y P, He L J, Wang H, Martinis J M, Cleland A N and Xie Q W 2013 Appl. Phys. Lett. 102 163503
[11] Palacios-Laloy A, Nguyen F, Mallet F, Bertet P, Vion D and Esteve D 2008 J. Low Temp. Phys. 151 1034
[12] Strickland W M, Elfeky B H, Yuan J O, Schiela W F, Yu P, Langone D, Vavilov M G, Manucharyan V E and Shabani J 2023 Phys. Rev. Appl. 19 034021
[13] Vissers M R, Hubmayr J, Sandberg M, Chaudhuri S, Bockstiegel C and Gao J 2015 Appl. Phys. Lett. 107 062601
[14] Mahashabde S, Otto E, Montemurro D, Graaf S, Kubatkin S and Danilov A 2020 Appl. Phys. Lett. 14 044040
[15] Adamyan A A, Kubatkin S E and Danilov A V 2016 Appl. Phys. Lett. 108 172601
[16] Xu M, Han X, Fu W, Zou C L and Tang H X 2019 Appl. Phys. Lett. 114 192601
[17] Zollitsch C W, O’Sullivan J, Kennedy O, Dold G and Morton J J L 2019 AIP Adv. 9 125225
[18] Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D P, DiCarlo L and Vandersypen L M K 2016 Phys. Rev. Appl. 5 044004
[19] Healey J E, Lindström T, Colclough M S, Muirhead C M and Tza-lenchuk A Y 2008 Appl. Phys. Lett. 93 043513
[20] Bienfait A, Campagne-Ibarcq P, Kiilerich A H, Zhou X, Probst S, Pla J J, Schenkel T, Vion D, Esteve D, Morton J J L, Moelmer K and Bertet P 2017 Phys. Rev. X 7 041011
[21] Kroll J G, Borsoi F, Enden K L, Uilhoorn W, Jong D, Quintero-Perez M, Woerkom D J, Bruno A, Plissard S R, Car D, Bakkers E P A M, Cassidy M C and Kouwenhoven L P 2019 Phys. Rev. Appl. 11 064053
[22] Asfaw A T, Sigillito A J, Tyryshkin A M, Schenkel T and Lyon S A 2017 Appl. Phys. Lett. 111 032601
[23] Grezes C, Julsgaard B, Kubo Y, Stern M, Umeda T, Isoya J, Sumiya H, Abe H, Onoda S, Ohshima T, Jacques V, Esteve J, Vion D, Esteve D, Mølmer K and Bertet P 2014 Phys. Rev. X 4 021049
[24] Wesenberg J H, Ardavan A, Briggs G A D, Morton J J L, Schoelkopf R J, Schuster D I and Mølmer K 2009 Phys. Rev. Lett. 103 070502
[25] Meservey R and Tedrow P M 1969 J. Appl. Phys. 40 2028
[26] Kubo S, Asahi M, Hikita M and Igarashi M 1984 Appl. Phys. Lett. 44 258
[27] Bothner D, Gaber T, Kemmler M, Koelle D and Kleiner R 2011 Appl. Phys. Lett. 98 102504
[28] Bothner D, Gaber T, Kemmler M, Koelle D and Kleiner R 2012 Phys. Rev. B 86 0145517
[29] Song C, DeFeo M P, Yu K and Plourde B L T 2009 Appl. Phys. Lett. 95 232501
[30] Bothner D, Clauss C, Koroknay E, Kemmler M, Gaber T, Jetter M, Scheffler M, Michler P, Dressel M, Koelle D and Kleiner R 2012 Appl. Phys. Lett. 100 012601
[31] Göppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J M, Leek P J, Puebla G, Steffen L and Wallraff A 2008 J. Appl. Phys. 104 113904
[32] Khalil M S, Stoutimore M J A, Wellstood F C and Osborn K D 2012 J. Appl. Phys. 111 054510
[33] Graaf S E, Tzalenchuk A Y and Lindström T 2018 Appl. Phys. Lett. 113 142601
[1] Disorder effects in NbTiN superconducting resonators
Wei-Tao Lyu(吕伟涛), Qiang Zhi(支强), Jie Hu(胡洁), Jing Li(李婧), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2024, 33(2): 027401.
[2] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[3] High-performance midwavelength infrared detectors based on InAsSb nBn design
Xuan Zhang(张璇), Qing-Xuan Jia(贾庆轩), Ju Sun(孙矩), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(6): 068501.
[4] Compact NbN resonators with high kinetic inductance
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2020, 29(12): 128401.
[5] Fabrication of superconducting NbN meander nanowires by nano-imprint lithography
Mei Yang(杨美), Li-Hua Liu(刘丽华), Lu-Hui Ning(宁鲁慧), Yi-Rong Jin(金贻荣), Hui Deng(邓辉), Jie Li(李洁), Yang Li(李阳), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2016, 25(1): 017401.
[6] Statistical analysis of the temporal single-photon response of superconducting nanowire single photon detection
He Yu-Hao (何宇昊), Lü Chao-Lin (吕超林), Zhang Wei-Jun (张伟君), Zhang Lu (张露), Wu Jun-Jie (巫君杰), Chen Si-Jing (陈思井), You Li-Xing (尤立星), Wang Zhen (王镇). Chin. Phys. B, 2015, 24(6): 060303.
[7] First-principles calculations on the elastic and thermodynamic properties of NbN
Ren Da-Hua (任达华), Cheng Xin-Lu (程新路). Chin. Phys. B, 2012, 21(12): 127103.
No Suggested Reading articles found!