INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Tunable superconducting resonators via on-chip control of local magnetic field |
Chen-Guang Wang(王晨光)1,2, Wen-Cheng Yue(岳文诚)1, Xuecou Tu(涂学凑)1, Tianyuan Chi(迟天圆)1, Tingting Guo(郭婷婷)1, Yang-Yang Lyu(吕阳阳)1, Sining Dong(董思宁)1,3, Chunhai Cao(曹春海)1, Labao Zhang(张蜡宝)1,4, Xiaoqing Jia(贾小氢)1,4, Guozhu Sun(孙国柱)1,4, Lin Kang(康琳)1,4, Jian Chen(陈健)1,2, Yong-Lei Wang(王永磊)1,2,3,†, Huabing Wang(王华兵)1,2,‡, and Peiheng Wu(吴培亨)1,2 |
1 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China; 2 Purple Mountain Laboratories, Nanjing 211111, China; 3 National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China; 4 Hefei National Laboratory, Hefei 230094, China |
|
|
Abstract Superconducting microwave resonators play a pivotal role in superconducting quantum circuits. The ability to fine-tune their resonant frequencies provides enhanced control and flexibility. Here, we introduce a frequency-tunable superconducting coplanar waveguide resonator. By applying electrical currents through specifically designed ground wires, we achieve the generation and control of a localized magnetic field on the central line of the resonator, enabling continuous tuning of its resonant frequency. We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator. This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.
|
Received: 22 February 2024
Revised: 26 February 2024
Accepted manuscript online: 01 March 2024
|
PACS:
|
84.40.Dc
|
(Microwave circuits)
|
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA0718802 and 2018YFA0209002), the National Natural Science Foundation of China (Grant Nos. 62274086, 62288101, 61971464, 62101243, and 11961141002), the Excellent Young Scholar Program of Jiangsu Province, China (Grant Nos. BK20200008 and BK20200060), the Outstanding Postdoctoral Program of Jiangsu Province, China, the Fundamental Research Funds for the Central Universities, and the Fund from Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves. |
Corresponding Authors:
Yong-Lei Wang, Huabing Wang
E-mail: yongleiwang@nju.edu.cn;hbwang@nju.edu.cn
|
Cite this article:
Chen-Guang Wang(王晨光), Wen-Cheng Yue(岳文诚), Xuecou Tu(涂学凑), Tianyuan Chi(迟天圆), Tingting Guo(郭婷婷), Yang-Yang Lyu(吕阳阳), Sining Dong(董思宁), Chunhai Cao(曹春海), Labao Zhang(张蜡宝), Xiaoqing Jia(贾小氢), Guozhu Sun(孙国柱), Lin Kang(康琳), Jian Chen(陈健), Yong-Lei Wang(王永磊), Huabing Wang(王华兵), and Peiheng Wu(吴培亨) Tunable superconducting resonators via on-chip control of local magnetic field 2024 Chin. Phys. B 33 058402
|
[1] Day P K, LeDuc H G, Mazin B A, Vayonakis A and Zmuidzinas J 2003 Nature 425 817 [2] Zmuidzinas J 2012 Annu. Rev. Condens. Matter Phys. 3 169 [3] Castellanos-Beltrana M A and Lehnert K W 2007 Appl. Phys. Lett. 91 083509 [4] Chaudhuri S, Li D, Irwin K D, Bockstiegel C, Hubmayr J, Ullom J N, Vissers M R and Gao J 2017 Appl. Phys. Lett. 110 152601 [5] Tholén E A, Ergül A, Doherty E M, Weber F M, Grégis F and Haviland D B 2007 Appl. Phys. Lett. 90 253509 [6] Eom1 B H, Day P K, LeDuc H G and Zmuidzinas J 2012 Nat. Phys. 8 623 [7] Stoutimore M J A, Khalil M S, Lobb C J and Osborn K D 2012 Appl. Phys. Lett. 101 062602 [8] Luomahaara J, Vesterinen V, Grõnberg L and Hassel J 2014 Nat. Commun. 5 4872 [9] Pierre M, Svensson I, Sathyamoorthy S R, Johansson G and Delsing P 2014 Appl. Phys. Lett. 104 232604 [10] Wang Z L, Zhong Y P, He L J, Wang H, Martinis J M, Cleland A N and Xie Q W 2013 Appl. Phys. Lett. 102 163503 [11] Palacios-Laloy A, Nguyen F, Mallet F, Bertet P, Vion D and Esteve D 2008 J. Low Temp. Phys. 151 1034 [12] Strickland W M, Elfeky B H, Yuan J O, Schiela W F, Yu P, Langone D, Vavilov M G, Manucharyan V E and Shabani J 2023 Phys. Rev. Appl. 19 034021 [13] Vissers M R, Hubmayr J, Sandberg M, Chaudhuri S, Bockstiegel C and Gao J 2015 Appl. Phys. Lett. 107 062601 [14] Mahashabde S, Otto E, Montemurro D, Graaf S, Kubatkin S and Danilov A 2020 Appl. Phys. Lett. 14 044040 [15] Adamyan A A, Kubatkin S E and Danilov A V 2016 Appl. Phys. Lett. 108 172601 [16] Xu M, Han X, Fu W, Zou C L and Tang H X 2019 Appl. Phys. Lett. 114 192601 [17] Zollitsch C W, O’Sullivan J, Kennedy O, Dold G and Morton J J L 2019 AIP Adv. 9 125225 [18] Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D P, DiCarlo L and Vandersypen L M K 2016 Phys. Rev. Appl. 5 044004 [19] Healey J E, Lindström T, Colclough M S, Muirhead C M and Tza-lenchuk A Y 2008 Appl. Phys. Lett. 93 043513 [20] Bienfait A, Campagne-Ibarcq P, Kiilerich A H, Zhou X, Probst S, Pla J J, Schenkel T, Vion D, Esteve D, Morton J J L, Moelmer K and Bertet P 2017 Phys. Rev. X 7 041011 [21] Kroll J G, Borsoi F, Enden K L, Uilhoorn W, Jong D, Quintero-Perez M, Woerkom D J, Bruno A, Plissard S R, Car D, Bakkers E P A M, Cassidy M C and Kouwenhoven L P 2019 Phys. Rev. Appl. 11 064053 [22] Asfaw A T, Sigillito A J, Tyryshkin A M, Schenkel T and Lyon S A 2017 Appl. Phys. Lett. 111 032601 [23] Grezes C, Julsgaard B, Kubo Y, Stern M, Umeda T, Isoya J, Sumiya H, Abe H, Onoda S, Ohshima T, Jacques V, Esteve J, Vion D, Esteve D, Mølmer K and Bertet P 2014 Phys. Rev. X 4 021049 [24] Wesenberg J H, Ardavan A, Briggs G A D, Morton J J L, Schoelkopf R J, Schuster D I and Mølmer K 2009 Phys. Rev. Lett. 103 070502 [25] Meservey R and Tedrow P M 1969 J. Appl. Phys. 40 2028 [26] Kubo S, Asahi M, Hikita M and Igarashi M 1984 Appl. Phys. Lett. 44 258 [27] Bothner D, Gaber T, Kemmler M, Koelle D and Kleiner R 2011 Appl. Phys. Lett. 98 102504 [28] Bothner D, Gaber T, Kemmler M, Koelle D and Kleiner R 2012 Phys. Rev. B 86 0145517 [29] Song C, DeFeo M P, Yu K and Plourde B L T 2009 Appl. Phys. Lett. 95 232501 [30] Bothner D, Clauss C, Koroknay E, Kemmler M, Gaber T, Jetter M, Scheffler M, Michler P, Dressel M, Koelle D and Kleiner R 2012 Appl. Phys. Lett. 100 012601 [31] Göppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J M, Leek P J, Puebla G, Steffen L and Wallraff A 2008 J. Appl. Phys. 104 113904 [32] Khalil M S, Stoutimore M J A, Wellstood F C and Osborn K D 2012 J. Appl. Phys. 111 054510 [33] Graaf S E, Tzalenchuk A Y and Lindström T 2018 Appl. Phys. Lett. 113 142601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|