Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120701    DOI: 10.1088/1674-1056/acf491
GENERAL Prev   Next  

Surface lattice resonance of circular nano-array integrated on optical fiber tips

Jian Wu(吴坚)1,†, Gao-Jie Ye(叶高杰)2, Xiu-Yang Pang(庞修洋)1, Xuefen Kan(阚雪芬)3, Yan Lu(陆炎)3, Jian Shi(史健)4, Qiang Yu(俞强)1,5, Cheng Yin(殷澄)2,‡, and Xianping Wang(王贤平)4
1 College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China;
2 College of Internet of Things Engineering, Hohai University, Changzhou 213022, China;
3 School of Transportation Engineering, Jiangsu Shipping College, Nantong 226010, China;
4 Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
5 i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  As metallic nanoparticles are arranged to form a 2D periodic nano-array, the coupling of the localized surface plasmonic resonance (LSPR) results in the well-known phenomenon of surface lattice resonances (SLRs). We theoretically investigate the SLR effect of the circular nano-array fabricated on the fiber tips. The difference between the 2D periodic and circular periodic arrays results in different resonant characteristics. For both structures, the resonant peaks due to the SLRs shift continuously as the array structures are adjusted. For some specific arrangements, the circular nano-array may generate a single sharp resonant peak with extremely high enhancement, which originates from the collective coupling of the whole array. More interestingly, the spatial pattern of the vector near-field corresponding to the sharp peak is independent of the polarization state of the incidence, facilitating its excitation and regulation. This finding may be helpful for designing multifunctional all-fiber devices.
Keywords:  fiber tip      lattice resonance      metallic nanoparticles      vector field  
Received:  16 April 2023      Revised:  22 August 2023      Accepted manuscript online:  29 August 2023
PACS:  07.60.Vg (Fiber-optic instruments)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: The authors thank to Professor Su and Dr. Luo at Hohai University for their fruitful discussions on data processing and computational simulation.This work was supported by the National Natural Science Foundation of China (Grant No.12174085), the Fundamental Research Funds for the Central Universities (Grant No.B220202018), the Changzhou Science and Technology Program (Grant No.CJ20210130), and CAS Key Laboratory of Nanodevices and Applications (Grant No.21YZ03).
Corresponding Authors:  Jian Wu, Cheng Yin     E-mail:  wujian15203@163.com;yinch@hhu.edu.cn

Cite this article: 

Jian Wu(吴坚), Gao-Jie Ye(叶高杰), Xiu-Yang Pang(庞修洋), Xuefen Kan(阚雪芬), Yan Lu(陆炎), Jian Shi(史健), Qiang Yu(俞强), Cheng Yin(殷澄), and Xianping Wang(王贤平) Surface lattice resonance of circular nano-array integrated on optical fiber tips 2023 Chin. Phys. B 32 120701

[1] Principe M, Consales M, Micco A, Crescitelli A, Castaldi G, Esposito E, La Ferrara V, Cutolo A, Galdi V and Cusano A 2017 Light: Sci. Appl. 6 e16226
[2] Zhang J, Chen S, Gong T, Zhang X and Zhu Y 2016 Plasmonics 11 743
[3] Berthelot J, Aćimović S S, Juan M L, Kreuzer M P, Renger J and Quidant R 2014 Nat. Nanotechnol. 9 295
[4] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[5] Gan X, Zhao C, Wang Y, Mao D, Fang L, Han L and Zhao J 2015 Optica 2 468
[6] Chen J H, Zheng B C, Shao G H, Ge S J, Xu F and Lu Y Q 2015 Light: Sci. Appl. 4 e360
[7] Xiong Y and Xu F 2020 Adv. Photon. 2 064001
[8] Chen J H, Xiong Y F, Xu F and Lu Y Q 2021 Light: Sci. Appl. 10 78
[9] Shi Y, Dong Y, Sun D and Li G 2022 Chin. Phys. B 31 14217
[10] Zhu J, Wang X, Wu X, Su Y, Xu Y, Qi Y, Zhang L and Yang H 2020 Chin. Phys. B 29 114204
[11] Michaeli L, Keren-Zur S, Avayu O, Suchowski H and Ellenbogen T 2017 Phys. Rev. Lett. 118 243904
[12] Kravets V G, Kabashin A V, Barnes W L and Grigorenko A N 2018 Chem. Rev. 118 5912
[13] Humphrey A D and Barnes W L 2014 Phys. Rev. B 90 075404
[14] Sreekanth K V, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan U A, De Luca A and Strangi G 2016 Nat. Mater. 15 621
[15] Liu W, Miroshnichenko A E, Neshev D N and Kivshar Y S 2012 Phys. Rev. B 86 081407
[16] Manjappa M, Srivastava Y K and Singh R 2016 Phys. Rev. B 94 161103
[17] Rui G, Zhan Q and Cui Y 2015 Sci. Rep. 5 13732
[18] Yang Y, Wu L, Liu Y, et al. 2020 Nano Lett. 20 6774
[19] Dorrah A H and Capasso F 2022 Science 376 eabi6860
[20] Moroz A 2009 J. Opt. Soc. Am. B 26 517
[21] Bohren C F and Huffman D R 2008 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons)
[22] Ouyang W H, Liu J B, Lai W S, Li J H and Liu B X 2023 Chin. Phys. B 32 036101
[23] Zhang Z, Yuan J, Qiu S, Zhou G, Zhou X, Yan B, Wu Q, Wang K and Sang X 2023 Chin. Phys. B 32 034208
[24] Cai W and Shalaev V M 2010 Optical Metamaterials (Berlin: Springer)
[25] Shi Y, Xiong Lei, Dong Y, Sun D and Li G 2022 Chin. Phys. B 31 014217
[1] Tailoring topological corner states in photonic crystals by near- and far-field coupling effects
Zhao-Jian Zhang(张兆健), Zhi-Hao Lan(兰智豪), Huan Chen(陈欢), Yang Yu(于洋), and Jun-Bo Yang(杨俊波). Chin. Phys. B, 2023, 32(12): 124201.
[2] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[3] Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation
Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和). Chin. Phys. B, 2021, 30(7): 070201.
[4] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[5] Three-dimensional modulations on the states of polarization of light fields
Peng Li(李鹏), Dongjing Wu(吴东京), Sheng Liu(刘圣), Yi Zhang(章毅), Xuyue Guo(郭旭岳), Shuxia Qi(齐淑霞), Yu Li(李渝), Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114201.
[6] Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method
Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲). Chin. Phys. B, 2017, 26(6): 063601.
[7] Resonant magneto-optical Kerr effect induced by hybrid plasma modes in ferromagnetic nanovoids
Xia Zhang(张 霞), Lei Shi(石 磊), Jing Li(李晶), Yun-Jie Xia(夏云杰), Shi-Ming Zhou(周仕明). Chin. Phys. B, 2017, 26(11): 117801.
[8] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[9] A high order energy preserving scheme for the strongly coupled nonlinear Schrödinger system
Jiang Chao-Long (蒋朝龙), Sun Jian-Qiang (孙建强). Chin. Phys. B, 2014, 23(5): 050202.
[10] Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array
Ding Pei (丁佩), Wang Jun-Qiao (王俊俏), He Jin-Na (何金娜), Fan Chun-Zhen (范春珍), Cai Gen-Wang (蔡根旺), Liang Er-Jun (梁二军). Chin. Phys. B, 2013, 22(12): 127802.
[11] LARGE AND EXTREMELY FAST THIRD-ORDER NON-LINEARITY OF Ag NANOPARTICLES EMBEDDED INTO A CsxO SEMICONDUCTOR MATRIX
Zhang Qi-feng (张琦锋), Shao Qing-yi (邵庆益), Hou Shi-min (侯士敏), Zhang Geng-min (张耿民), Liu Wei-min (刘惟敏), Xue Zeng-quan (薛增泉), Wu Jin-lei (吴锦雷), Wang Shu-feng (王树峰), Liang Rui-sheng (梁瑞生), Huang Wen-tao (黄文涛), Wang Dan-ling (王丹翎), Gong Qi-huang (龚旗煌). Chin. Phys. B, 2001, 10(13): 65-69.
No Suggested Reading articles found!