|
|
Non-Gaussian quantum states generated via quantum catalysis and their statistical properties |
Xiao-Yan Zhang(张晓燕)1, Chun-Yan Yang(杨春燕)2, Ji-Suo Wang(王继锁)1,†, and Xiang-Guo Meng(孟祥国)3,‡ |
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; 2 Shandong National Secondary Vocational School, Qingzhou 262500, China; 3 School of Basic Medical Sciences, Weifang Medical University, Weifang 261000, China |
|
|
Abstract A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state. The characteristics of the generated multiphoton catalysis output state depends on the thermal parameter, catalyzed photon number and squeezing parameter. We then analyze the nonclassical properties by examining the photon number distribution, photocount distribution and partial negativity of the Wigner function. Our findings indicate that nonclassicality can be achieved through the implementation of multiphoton catalysis operations and modulated by the thermal parameter, catalyzed photon number and squeezing parameter.
|
Received: 21 December 2023
Revised: 02 February 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11347026) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2020MA085 and ZR2020MF113). |
Corresponding Authors:
Ji-Suo Wang, and Xiang-Guo Meng
E-mail: jswang@qfnu.edu.cn;mengxiangguo1978@sina.com
|
Cite this article:
Xiao-Yan Zhang(张晓燕), Chun-Yan Yang(杨春燕), Ji-Suo Wang(王继锁), and Xiang-Guo Meng(孟祥国) Non-Gaussian quantum states generated via quantum catalysis and their statistical properties 2024 Chin. Phys. B 33 040308
|
[1] Kok P and Lovett B W 2010 Introduction to Optical Quantum Information Processing (Cambridge:Cambridge University Press) [2] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press) [3] Wenger J, Tualle-Brouri R, and Grangier P 2004 Phys. Rev. Lett. 92 153601 [4] Carranza R and Gerry C C 2012 J. Opt. Soc. Am. B 29 2581 [5] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602 [6] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601 [7] Lloyd S and Braunstein S L 1999 Phys. Rev. Lett. 82 1784 [8] Takeda S, Benichi H, Mizuta T, Lee N, Yoshikawa J and Furusawa A 2012 Phys. Rev. A 85 053824 [9] Vasylyev D, Vogel W and Semenov A A 2018 Phys. Rev. A 97 063852 [10] Felicetti S, Fedortchenko S, Rossi J R, Ducci S, Favero I, Coudreau T and Milman P 2017 Phys. Rev. A 95 022322 [11] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842 [12] Ye W, Zhou W D, Zhang H L, Liu C J, Huang J H and Hu L Y 2017 Laser Phys. Lett. 14 115201 [13] Braun D, Jian P, Pinel O and Treps N 2014 Phys. Rev. A 90 013821 [14] Wang J S, Meng X G and Zhang X Y 2020 Chin. Phys. B 29 124213 [15] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492 [16] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106 [17] Ra Y S, Dufour A, Walschaers M, et al. 2020 Nat. Phys. 16 144 [18] Lee S Y, Ji S W, Kim H J and Nha H 2011 Phys. Rev. A 84 012302 [19] Dhar H S, Chatterjee A and Ghosh R 2015 J. Phys. B:At. Mol. Opt. Phys. 48 185502 [20] Lvovsky A I and Mlynek J 2002 Phys. Rev. Lett. 88 250401 [21] Bartley T J, Donati G, Spring J B, Jin X M, Barbieri M, Datta A, Smith B J and Walmsley I A 2012 Phys. Rev. A 86 043820 [22] Ye W, Zhang K Z, Zhang H L, Xu X X and Hu L Y 2018 Laser Phys. Lett. 15 025204 [23] Ye W, Zhong H, Liao Q, Huang D, Hu L Y and Guo Y 2019 Opt. Express 27 17186 [24] Zhang H, Ye W, Wei C P, Xia Y, Chang S K, Liao Z Y and Hu L Y 2021 Phys. Rev. A 103 013705 [25] Fan H Y 1991 Phys. Lett. A 161 1 [26] Meng X G, Li K C, Wang J S, Yang Z S, Zhang X Y, Zhang Z T and Liang B L 2020 Front. Phys. 15 52501 [27] Kelley P L and Kleiner W H 1964 Phys. Rev. 136 316 [28] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443 [29] Wigner E P 1932 Phys. Rev. 40 749 [30] Wang J S, Meng X G and Fan H Y 2019 Chin. Phys. B 28 100301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|