Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040308    DOI: 10.1088/1674-1056/ad2a74
GENERAL Prev   Next  

Non-Gaussian quantum states generated via quantum catalysis and their statistical properties

Xiao-Yan Zhang(张晓燕)1, Chun-Yan Yang(杨春燕)2, Ji-Suo Wang(王继锁)1,†, and Xiang-Guo Meng(孟祥国)3,‡
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
2 Shandong National Secondary Vocational School, Qingzhou 262500, China;
3 School of Basic Medical Sciences, Weifang Medical University, Weifang 261000, China
Abstract  A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state. The characteristics of the generated multiphoton catalysis output state depends on the thermal parameter, catalyzed photon number and squeezing parameter. We then analyze the nonclassical properties by examining the photon number distribution, photocount distribution and partial negativity of the Wigner function. Our findings indicate that nonclassicality can be achieved through the implementation of multiphoton catalysis operations and modulated by the thermal parameter, catalyzed photon number and squeezing parameter.
Keywords:  two-mode squeezing      multiphoton catalysis      nonclassicality      Wigner function  
Received:  21 December 2023      Revised:  02 February 2024      Accepted manuscript online:  19 February 2024
PACS:  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
  42.50.-p (Quantum optics)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11347026) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2020MA085 and ZR2020MF113).
Corresponding Authors:  Ji-Suo Wang, and Xiang-Guo Meng     E-mail:  jswang@qfnu.edu.cn;mengxiangguo1978@sina.com

Cite this article: 

Xiao-Yan Zhang(张晓燕), Chun-Yan Yang(杨春燕), Ji-Suo Wang(王继锁), and Xiang-Guo Meng(孟祥国) Non-Gaussian quantum states generated via quantum catalysis and their statistical properties 2024 Chin. Phys. B 33 040308

[1] Kok P and Lovett B W 2010 Introduction to Optical Quantum Information Processing (Cambridge:Cambridge University Press)
[2] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
[3] Wenger J, Tualle-Brouri R, and Grangier P 2004 Phys. Rev. Lett. 92 153601
[4] Carranza R and Gerry C C 2012 J. Opt. Soc. Am. B 29 2581
[5] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[6] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
[7] Lloyd S and Braunstein S L 1999 Phys. Rev. Lett. 82 1784
[8] Takeda S, Benichi H, Mizuta T, Lee N, Yoshikawa J and Furusawa A 2012 Phys. Rev. A 85 053824
[9] Vasylyev D, Vogel W and Semenov A A 2018 Phys. Rev. A 97 063852
[10] Felicetti S, Fedortchenko S, Rossi J R, Ducci S, Favero I, Coudreau T and Milman P 2017 Phys. Rev. A 95 022322
[11] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[12] Ye W, Zhou W D, Zhang H L, Liu C J, Huang J H and Hu L Y 2017 Laser Phys. Lett. 14 115201
[13] Braun D, Jian P, Pinel O and Treps N 2014 Phys. Rev. A 90 013821
[14] Wang J S, Meng X G and Zhang X Y 2020 Chin. Phys. B 29 124213
[15] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[16] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
[17] Ra Y S, Dufour A, Walschaers M, et al. 2020 Nat. Phys. 16 144
[18] Lee S Y, Ji S W, Kim H J and Nha H 2011 Phys. Rev. A 84 012302
[19] Dhar H S, Chatterjee A and Ghosh R 2015 J. Phys. B:At. Mol. Opt. Phys. 48 185502
[20] Lvovsky A I and Mlynek J 2002 Phys. Rev. Lett. 88 250401
[21] Bartley T J, Donati G, Spring J B, Jin X M, Barbieri M, Datta A, Smith B J and Walmsley I A 2012 Phys. Rev. A 86 043820
[22] Ye W, Zhang K Z, Zhang H L, Xu X X and Hu L Y 2018 Laser Phys. Lett. 15 025204
[23] Ye W, Zhong H, Liao Q, Huang D, Hu L Y and Guo Y 2019 Opt. Express 27 17186
[24] Zhang H, Ye W, Wei C P, Xia Y, Chang S K, Liao Z Y and Hu L Y 2021 Phys. Rev. A 103 013705
[25] Fan H Y 1991 Phys. Lett. A 161 1
[26] Meng X G, Li K C, Wang J S, Yang Z S, Zhang X Y, Zhang Z T and Liang B L 2020 Front. Phys. 15 52501
[27] Kelley P L and Kleiner W H 1964 Phys. Rev. 136 316
[28] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[29] Wigner E P 1932 Phys. Rev. 40 749
[30] Wang J S, Meng X G and Fan H Y 2019 Chin. Phys. B 28 100301
[1] Wigner function of optical cumulant operator and its dissipation in thermo-entangled state representation
Ke Zhang(张科), Lan-Lan Li(李兰兰), Hong-Yi Fan(范洪义). Chin. Phys. B, 2024, 33(6): 060307.
[2] New light fields based on integration theory within the Weyl ordering product of operators
Ke Zhang(张科), Lan-Lan Li(李兰兰), Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040301.
[3] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[4] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[5] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[6] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[7] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[8] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[9] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[10] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[11] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[12] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[13] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[14] Detaching two single-mode squeezing operators from the two-mode squeezing operator
Fan Hong-Yi (范洪义), Da Cheng (笪诚). Chin. Phys. B, 2013, 22(9): 090303.
[15] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
No Suggested Reading articles found!