Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 046502    DOI: 10.1088/1674-1056/ad0290
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles

Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意)
Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, China
Abstract  The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity (TC). This will benefit the improvement and application of thermoelectric conversion, insulating materials and thermal barrier coatings, etc. In this work, the effects of nanopillars and Ge nanoparticles (GNPs) on the thermal transport of Si nanowire (SN) are investigated by nonequilibrium molecular dynamics (NEMD) simulation. By analyzing phonons transport behaviors, it is confirmed that the introduction of nanopillars leads to the occurrence of low-frequency phonons resonance, and nanoparticles enhance high-frequency phonons interface scattering and localization. The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles. In addition, the effects of system length, temperature, sizes and numbers of nanoparticles on the TC are investigated. Our work provides useful insights into the effective regulation of the TC of nanomaterials.
Keywords:  resonant structure      nanoparticles      nanopillars      phonon transport      thermal conductivity  
Received:  07 August 2023      Revised:  20 September 2023      Accepted manuscript online:  12 October 2023
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  44.10.+i (Heat conduction)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52076080) and the Natural Science Foundation of Hebei Province of China (Grant No. E2020502011).
Corresponding Authors:  Yingguang Liu     E-mail:  yingguang266@126.com

Cite this article: 

Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意) Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles 2024 Chin. Phys. B 33 046502

[1] Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X and Zhong J X 2020 Chin. Phys. B 29 118401
[2] Zhao X and Jiang J W 2022 Chin. Phys. B 31 126802
[3] Xu Y 2016 Chin. Phys. B 25 117309
[4] Xu H H, Liu X Y, He Y H, Fan C, Du G, Sun A D, Han R Q and Kang J F 2010 Chin. Phys. B 19 014601
[5] Hori T and Shiomi J 2018 Sci. Technol. Adv. Mater. 19 10
[6] Cocemasov A I, Isacova C I and Nika D L 2018 Chin. Phys. B 27 056301
[7] Zhang H G, Sun B, Hu S, Wang H Y, Cheng Y J, Xiong S Y, Volz S and Ni Y X 2020 Phys. Rev. B 100 205418
[8] Liu Y G, Li Y T, Shen K B, Qiu Y J and Xie J 2023 Int. J. Heat Mass Tranf. 203 123789
[9] Chen P X, Katcho N A, Feser J P, Li W, Glaser M, Schmidt O G, Cahill D G, Mingo N and Rastelli A 2013 Phys. Rev. Lett. 111 115901
[10] Biswas K 2012 Nature 489 414
[11] Zhou Y and Hu M 2016 Nano. Lett. 16 6178
[12] Nakamura Y, Isogawa M, Ueda T, Amasaka S Y, Matsui H, Kikkawa J, Ikeuchi S, Oyake T, Hori T, Shiomi J and Sakai A 2015 Nano Energy 12 845
[13] Hu S, Zhao C Y and Gu X 2022 Chin. Phys. B 31 056301
[14] Davis B L and Hussein M I 2014 Phys. Rev. Lett. 112 055505
[15] Hussein M I, Tsai C N and Honarvar H 2020 Adv. Funct. Mater. 30 1906718
[16] Wang H Y, Cheng T J, Nomura M, Volz S, Donadio D, Zhang X H and Xiong S Y 2021 Phys. Rev. B 103 085414
[17] Xiong S Y, Sääskilahti K, Kosevich Y A, Han H X, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503
[18] Liang Q, He Y L and Hung T C 2021 Int. J. Heat Mass Transf. 176 121425
[19] Wang H Y, Cheng Y, Fan Z, Guo Y, Zhang Z, Bescond M, Nomura M, Ala-Nissila T, Volz S and Xiong S 2021 Nanoscale 13 10010
[20] Li K, Cheng Y, Wang H, Guo Y, Zhang Z, Bescond M, Nomura M, Volz S, Zhang X and Xiong S 2022 Int. J. Heat Mass Transf. 183 122144
[21] Plimpton S 1995 J. Comput. Phys. 117 1
[22] Tersoff J 1989 Phys. Rev. B 39 5566
[23] Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D and Ala-Nissila T 2019 J. Chem. Phys. 151 234105
[24] Cui L, Guo X, Yu Q, Wei G and Du X 2022 Int. J. Heat Mass Transf. 196 123227
[25] Ma D, Wan X and Yang N 2018 Phys. Rev. B 98 245420
[26] Sellan D P, Landry E S, Turney J E, McGaughey A J H and Amon C H 2010 Phys. Rev. B 81 214305
[27] Wan Y, Xiong S, Ouyang B, Niu Z, Ni Y, Zhao Y and Zhang X 2019 ACS Omega 4 4147
[28] Zaoui H, Palla P L, Cleri F and Lampin E 2016 Phys. Rev. B 94 054304
[29] Sääskilahti K, Oksanen J, Tulkki J and Volz S 2014 Phys. Rev. B 90 134312
[30] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426
[31] Ma Y L, Zhang Z W, Chen J G, Sääskilahti K, Volz S and Chen J 2018 Carbon 135 263
[32] Li B W, Lan J H and Wang L 2005 Phys. Rev. Lett. 95 104302
[33] Liang T, Zhou M, Zhang P, Yuan P and Yang D G 2020 Int. J. Heat Mass Transf. 151 119395
[34] Tang Y, Liu J, Yu Z, Sun L and Zhu L 2023 Chin. Phys. B 32 66502
[35] Dong H K, Fan Z Y, Shi L B, Harju A and Ala-Nissila T 2018 Phys. Rev. B 97 094305
[36] Kang J S, Li M, Wu H, Nguyen H and Hu Y J 2018 Science 361 575
[37] Sun Y, Zhou Y, Han J, Hu M and Liu W 2020 J. Appl. Phys. 127 45106
[38] Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906
[39] Giri A and Hopkins P E 2018 Phys. Rev. B 98 045421
[40] Huang X, Ohori D, Yanagisawa R, Anufriev R, Samukawa S and Nomura M 2020 ACS Appl. Mater. Inter. 12 25478
[41] Gale J D and Rohl A L 2003 Mol. Simul. 29 291
[42] Kim W and Majumdar A 2006 J. Appl. Phys. 99 084306
[43] Mingo N, Hauser D, Kobayashi N P, Plissonnier M and Shakouri A 2009 Nano Lett. 9 711
[44] Liu Y G, Bian Y Q, Chernatynskiy A and Han Z H 2019 Int. J. Heat Mass Transf. 145 118791
[1] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[2] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[3] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[4] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[5] Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia
Yundong Tang(汤云东), Ming Chen(陈鸣), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(9): 094401.
[6] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[7] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[8] An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2023, 32(6): 064401.
[9] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[10] Molecular fluorescence significantly enhanced by gold nanoparticles@zeolitic imidazolate framework-8
Yuyi Zhang(张钰伊), Yajie Bian(卞亚杰), Wei Zhang(张炜), Yiting Liu(刘易婷), Xiaolei Zhang(张晓磊),Mengdi Chen(陈梦迪), Bingwen Hu(胡炳文), and Qingyuan Jin(金庆原). Chin. Phys. B, 2023, 32(5): 054208.
[11] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[12] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[13] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[14] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[15] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
No Suggested Reading articles found!