Special Issue:
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
|
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles |
Yatao Li(李亚涛), Yingguang Liu(刘英光)†, Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意) |
Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, China |
|
|
Abstract The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity (TC). This will benefit the improvement and application of thermoelectric conversion, insulating materials and thermal barrier coatings, etc. In this work, the effects of nanopillars and Ge nanoparticles (GNPs) on the thermal transport of Si nanowire (SN) are investigated by nonequilibrium molecular dynamics (NEMD) simulation. By analyzing phonons transport behaviors, it is confirmed that the introduction of nanopillars leads to the occurrence of low-frequency phonons resonance, and nanoparticles enhance high-frequency phonons interface scattering and localization. The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles. In addition, the effects of system length, temperature, sizes and numbers of nanoparticles on the TC are investigated. Our work provides useful insights into the effective regulation of the TC of nanomaterials.
|
Received: 07 August 2023
Revised: 20 September 2023
Accepted manuscript online: 12 October 2023
|
PACS:
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
44.10.+i
|
(Heat conduction)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52076080) and the Natural Science Foundation of Hebei Province of China (Grant No. E2020502011). |
Corresponding Authors:
Yingguang Liu
E-mail: yingguang266@126.com
|
Cite this article:
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意) Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles 2024 Chin. Phys. B 33 046502
|
[1] Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X and Zhong J X 2020 Chin. Phys. B 29 118401 [2] Zhao X and Jiang J W 2022 Chin. Phys. B 31 126802 [3] Xu Y 2016 Chin. Phys. B 25 117309 [4] Xu H H, Liu X Y, He Y H, Fan C, Du G, Sun A D, Han R Q and Kang J F 2010 Chin. Phys. B 19 014601 [5] Hori T and Shiomi J 2018 Sci. Technol. Adv. Mater. 19 10 [6] Cocemasov A I, Isacova C I and Nika D L 2018 Chin. Phys. B 27 056301 [7] Zhang H G, Sun B, Hu S, Wang H Y, Cheng Y J, Xiong S Y, Volz S and Ni Y X 2020 Phys. Rev. B 100 205418 [8] Liu Y G, Li Y T, Shen K B, Qiu Y J and Xie J 2023 Int. J. Heat Mass Tranf. 203 123789 [9] Chen P X, Katcho N A, Feser J P, Li W, Glaser M, Schmidt O G, Cahill D G, Mingo N and Rastelli A 2013 Phys. Rev. Lett. 111 115901 [10] Biswas K 2012 Nature 489 414 [11] Zhou Y and Hu M 2016 Nano. Lett. 16 6178 [12] Nakamura Y, Isogawa M, Ueda T, Amasaka S Y, Matsui H, Kikkawa J, Ikeuchi S, Oyake T, Hori T, Shiomi J and Sakai A 2015 Nano Energy 12 845 [13] Hu S, Zhao C Y and Gu X 2022 Chin. Phys. B 31 056301 [14] Davis B L and Hussein M I 2014 Phys. Rev. Lett. 112 055505 [15] Hussein M I, Tsai C N and Honarvar H 2020 Adv. Funct. Mater. 30 1906718 [16] Wang H Y, Cheng T J, Nomura M, Volz S, Donadio D, Zhang X H and Xiong S Y 2021 Phys. Rev. B 103 085414 [17] Xiong S Y, Sääskilahti K, Kosevich Y A, Han H X, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503 [18] Liang Q, He Y L and Hung T C 2021 Int. J. Heat Mass Transf. 176 121425 [19] Wang H Y, Cheng Y, Fan Z, Guo Y, Zhang Z, Bescond M, Nomura M, Ala-Nissila T, Volz S and Xiong S 2021 Nanoscale 13 10010 [20] Li K, Cheng Y, Wang H, Guo Y, Zhang Z, Bescond M, Nomura M, Volz S, Zhang X and Xiong S 2022 Int. J. Heat Mass Transf. 183 122144 [21] Plimpton S 1995 J. Comput. Phys. 117 1 [22] Tersoff J 1989 Phys. Rev. B 39 5566 [23] Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D and Ala-Nissila T 2019 J. Chem. Phys. 151 234105 [24] Cui L, Guo X, Yu Q, Wei G and Du X 2022 Int. J. Heat Mass Transf. 196 123227 [25] Ma D, Wan X and Yang N 2018 Phys. Rev. B 98 245420 [26] Sellan D P, Landry E S, Turney J E, McGaughey A J H and Amon C H 2010 Phys. Rev. B 81 214305 [27] Wan Y, Xiong S, Ouyang B, Niu Z, Ni Y, Zhao Y and Zhang X 2019 ACS Omega 4 4147 [28] Zaoui H, Palla P L, Cleri F and Lampin E 2016 Phys. Rev. B 94 054304 [29] Sääskilahti K, Oksanen J, Tulkki J and Volz S 2014 Phys. Rev. B 90 134312 [30] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426 [31] Ma Y L, Zhang Z W, Chen J G, Sääskilahti K, Volz S and Chen J 2018 Carbon 135 263 [32] Li B W, Lan J H and Wang L 2005 Phys. Rev. Lett. 95 104302 [33] Liang T, Zhou M, Zhang P, Yuan P and Yang D G 2020 Int. J. Heat Mass Transf. 151 119395 [34] Tang Y, Liu J, Yu Z, Sun L and Zhu L 2023 Chin. Phys. B 32 66502 [35] Dong H K, Fan Z Y, Shi L B, Harju A and Ala-Nissila T 2018 Phys. Rev. B 97 094305 [36] Kang J S, Li M, Wu H, Nguyen H and Hu Y J 2018 Science 361 575 [37] Sun Y, Zhou Y, Han J, Hu M and Liu W 2020 J. Appl. Phys. 127 45106 [38] Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906 [39] Giri A and Hopkins P E 2018 Phys. Rev. B 98 045421 [40] Huang X, Ohori D, Yanagisawa R, Anufriev R, Samukawa S and Nomura M 2020 ACS Appl. Mater. Inter. 12 25478 [41] Gale J D and Rohl A L 2003 Mol. Simul. 29 291 [42] Kim W and Majumdar A 2006 J. Appl. Phys. 99 084306 [43] Mingo N, Hauser D, Kobayashi N P, Plissonnier M and Shakouri A 2009 Nano Lett. 9 711 [44] Liu Y G, Bian Y Q, Chernatynskiy A and Han Z H 2019 Int. J. Heat Mass Transf. 145 118791 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|