Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 028708    DOI: 10.1088/1674-1056/ad1177
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Origin of tradeoff between movement velocity and attachment duration of kinesin motor on a microtubule

Yuying Liu(刘玉颖)1,† and Zhiqiang Zhang(张志强)2
1 Department of Physics, College of Science, China Agricultural University, Beijing 100083, China;
2 Basic Ministry, Space Engineering University, Beijing 101416, China
Abstract  Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiled-coil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 μm·s-1 and an attachment duration of about 1 s under physiological conditions. The available experimental data indicate a tradeoff between velocity and attachment duration under various experimental conditions, such as variation of the solution temperature, variation of the strain between the two motor domains, and so on. However, the underlying mechanism of the tradeoff is unknown. Here, the mechanism is explained by a theoretical study of the dynamics of the motor under various experimental conditions, reproducing quantitatively the available experimental data and providing additional predictions. How the various experimental conditions lead to different decreasing rates of attachment duration versus velocity is also explained.
Keywords:  motor protein      velocity      detachment time      processivity  
Received:  30 September 2023      Revised:  16 November 2023      Accepted manuscript online:  01 December 2023
PACS:  87.10.Tf (Molecular dynamics simulation)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.15.hg (Dynamics of intermolecular interactions)  
Corresponding Authors:  Yuying Liu     E-mail:  liuyuying@cau.edu.cn

Cite this article: 

Yuying Liu(刘玉颖) and Zhiqiang Zhang(张志强) Origin of tradeoff between movement velocity and attachment duration of kinesin motor on a microtubule 2024 Chin. Phys. B 33 028708

[1] Vale R D, Reese T S and Sheetz M P 1985 Cell 42 39
[2] Lawrence C J, Dawe R K, Christie K R, Cleveland D W, Dawson S C, Endow S A, Goldstein LSB, Goodson H V, Hirokawa N and Howard J 2004 Cell Biol. 167 19
[3] Kozielski F, Sack S, Marx A, Thormählen M, Schönbrunn E, Biou V, Thompson A, Mandelkow E M and Mandelkow E 1997 Cell 91 985
[4] Shang Z, Zhou K, Xu C, Csencsits R, Cochran J C and Sindelar C V 2014 eLife 3 e04686
[5] Howard J 1996 Annu. Rev. Physiol. 58 703
[6] Asbury C L 2005 Curr. Opin. Cell Biol. 17 89
[7] Block S M 2007 Biophys. J. 92 2986
[8] Cross R A 2017 Biopolymers 105 476
[9] Xie P 2021 Commun. Theor. Phys. 73 057601
[10] Xie P 2023 J. Biol. Phys. 49 77
[11] Xie P 2023 Biophysica 3 46
[12] Vale R D 2003 Cell 112 467
[13] Asbury C L, Fehr A N and Block S M 2003 Science 302 2130
[14] Yildiz A, Tomishige M, Vale R D and Selvin P R 2004 Science 303 676
[15] Block S M, Goldstein L S and Schnapp B J 1990 Nature 348 348
[16] Svoboda K, Schmidt C F, Schnapp B J and Block S M 1993 Nature 365 721
[17] Hua W, Young E C, Fleming M L and Gelles J 1997 Nature 388 390
[18] Coy D L, Wagenbach M and Howard J 1999 J. Biol. Chem. 274 3667
[19] Kaseda K, Higuchi H and Horose K 2002 Proc. Natl. Acad. Sci. USA 99 16058
[20] Clancy B E, Behnke-Parks W M, Andreasson J O L, Rosenfeld S S and Block S M 2011 Nat. Struct. Mol. Biol. 18 1020
[21] Yildiz A, Tomishige M, Gennerich A and Vale R D 2008 Cell 134 1030
[22] Taniguchi Y, Nishiyama M, Ishii Y and Yanagida T 2005 Nat. Chem. Biol. 1 342
[23] Kawaguchi K and Ishiwata S 2000 Biochem. Biophys. Res. Commun. 272 895
[24] Kawaguchi K and Ishiwata S 2001 Cell Motility and the Cytoskeleton 49 41
[25] Nara I and Ishiwata S 2006 Biophysics 2 13
[26] Rizvi M S 2022 J. Biol. Phys. 48 369
[27] Xie P 2021 J. Theor. Biol. 530 110879
[28] Xie P 2023 J. Theor. Biol. 571 111556
[29] Xie P 2020 ACS Omega 5 5721
[30] Guo S K, Wang P Y and Xie P 2017 J. Theor. Biol. 414 62
[31] Glennon T M, Villa J and Warshel A 2000 Biochemistry 39 9641
[32] Grigorenko B L, Rogov A V, Topol I A, Burt S K, Martinez H M and Nemukhin A V 2007 Proc. Natl. Acad. Sci. USA 104 7057
[33] Xie P 2019 Cell Mol. Bioeng. 12 179
[34] Xie P, Guo S K and Chen H 2019 Int. J. Mol. Sci. 20 4911
[35] Xie P 2009 J. Theor. Biol. 259 434
[36] Cleary F B, Dewitt M A, Bilyard T, Htet Z M, Belyy V, Chan D D, Chang A Y and Yildiz A 2014 Nat. Commun. 5 4587
[37] Xie P 2019 Euro. Biophys. J. 48 609
[1] Symmetric Brownian motor subjected to Lévy noise
Kao Jia(贾考), Lan Hu(胡兰), and Linru Nie(聂林如). Chin. Phys. B, 2024, 33(2): 020502.
[2] Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference
Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海). Chin. Phys. B, 2023, 32(6): 064202.
[3] Effect of particle shape on packing fraction and velocity profiles at outlet of a silo
Qing-Qing Gao(高庆庆), Yu-Chao Chen(陈玉超), and Lin Hu(胡林). Chin. Phys. B, 2023, 32(6): 064702.
[4] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(杨俊豪), Yixuan Fu(符艺萱), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114213.
[7] Nonlinear inversion of ultrasonic guided waves for in vivo evaluation of cortical bone properties
Xiaojun Song(宋小军), Tiandi Fan(樊天地), Jundong Zeng(曾俊冬), Qin-Zhen Shi(石勤振), Qiong Huang(黄琼), Meilin Gu(顾美琳), Petro Moilanen, Yi-Fang Li(李义方), and Dean Ta(他得安). Chin. Phys. B, 2022, 31(7): 074301.
[8] Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator
Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳). Chin. Phys. B, 2022, 31(2): 024303.
[9] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[10] Rolling velocity and relative motion of particle detector in local granular flow
Ran Li(李然), Bao-Lin Liu(刘宝林), Gang Zheng(郑刚), and Hui Yang(杨晖). Chin. Phys. B, 2022, 31(11): 114501.
[11] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[12] Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
Hongcai Ma(马红彩), Yuxin Wang(王玉鑫), and Aiping Deng(邓爱平). Chin. Phys. B, 2022, 31(1): 010201.
[13] X-ray emission for Ar11+ ions impacting on various targets in the collisions near the Bohr velocity
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红), Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Chang-Hui Liang(梁昌慧), Yao-Zong Li(李耀宗), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2021, 30(8): 083201.
[14] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[15] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
No Suggested Reading articles found!