Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064702    DOI: 10.1088/1674-1056/aca204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of particle shape on packing fraction and velocity profiles at outlet of a silo

Qing-Qing Gao(高庆庆)1, Yu-Chao Chen(陈玉超)2, and Lin Hu(胡林)1,†
1 College of Physics, Guizhou University, Guiyang 550025, China;
2 Department of Civil Engineering, Nanyang Normal University, Nanyang 473061, China
Abstract  Many studies on how the particle shape affects the discharge flow mainly focus on discharge rates and avalanche statistics. In this study, the effect of the particle shape on the packing fraction and velocities of particles in the silo discharge flow are investigated by using the discrete element method. The time-averaged packing fraction and velocity profiles through the aperture are systematically measured for superelliptical particles with different blockinesses. Increasing the particle blockiness is found to increase resistance to flow and reduce the flow rate. At an identical outlet size, larger particle blockiness leads to lower velocity and packing fraction at the outlet. The packing fraction profiles display evidently the self-similar feature that can be appropriately adjusted by fractional power law. The velocity profiles for particles with different shapes obey a uniform self-similar law that is in accord with previous experimental results, which is compatible with the hypothesis of free fall arch. To further investigate the origin of flow behaviors, the packing fraction and velocity field in the region above the orifice are computed. Based on these observations, the flow rate of superelliptical particles is calculated and in agreement with the simulated data.
Keywords:  superelliptical particles      flow rate      packing fraction and velocity profiles      discrete element method  
Received:  01 September 2022      Revised:  01 November 2022      Accepted manuscript online:  11 November 2022
PACS:  47.57.Gc (Granular flow)  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
Fund: Project supported by the Science and Technology Program of Guizhou Province, China (Grant No. [2018]1048).
Corresponding Authors:  Lin Hu     E-mail:  hulin2018@sina.com

Cite this article: 

Qing-Qing Gao(高庆庆), Yu-Chao Chen(陈玉超), and Lin Hu(胡林) Effect of particle shape on packing fraction and velocity profiles at outlet of a silo 2023 Chin. Phys. B 32 064702

[1] Aranson I S and Tsimring L S2006 Rev. Mod. Phys. 78 641
[2] Bursik M, Patra A, Pitman E B, Nichita C, Macias J L, Saucedo R and Girina O2005 Reports Prog. Phys. 68 271
[3] Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clément E, Maza D, Pagonabarraga I and Garcimartín A2014 Sci. Rep. 4 7324
[4] Denisov D V, Lörincz K A, Uhl J T, Dahmen K A and Schall P2016 Nat. Commun. 7 10641
[5] Cleary P W, Hilton J E and Sinnott M D2017 Powder Technol. 314 232
[6] Zhu H P, Zhou Z Y, Yang R Y and Yu A B2008 Chem. Eng. Sci. 63 5728
[7] Zhong W, Yu A, Liu X, Tong Z and Zhang H2016 Powder Technol. 302 108
[8] Govender N, Wilke D N, Wu C Y, Khinast J, Pizette P and Xu W2018 Chem. Eng. Sci. 188 34
[9] Seville J, Tüzün U and Clift R 1997 Processing of Particulate Solids (London: Blackie Academic & Professional)
[10] Beverloo W A, Leniger H A and van de Velde J1961 Chem. Eng. Sci. 15 260
[11] Ristow G H1997 Physica A 235 319
[12] Zhu H W, Wang L P, Shi Q F, Li L S and Zheng N2019 Powder Technol. 345 676
[13] Aguirre M A, Grande J G, Calvo A, Pugnaloni L A and Géminard J C2010 Phys. Rev. Lett. 104 238002
[14] Hilton J E and Cleary P W2011 Phys. Rev. E 84 11307
[15] Lin P, Zhang S, Qi J, Xing Y M and Yang L2015 Physica A 417 29
[16] Tang J and Behringer R P2016 Europhys. Lett. 114 34002
[17] Wang T, Li X, Wu Q, Jiao T, Liu X, Sun M, Hu F and Huang D2018 Chin. Phys. B 27 124704
[18] Janda A, Zuriguel I and Maza D2012 Phys. Rev. Lett. 108 248001
[19] Rubio-Largo S M, Janda A, Maza D, Zuriguel I and Hidalgo R C2015 Phys. Rev. Lett. 114 238002
[20] Weinhart T, Labra C, Luding S and Ooi J Y2016 Powder Technol. 293 138
[21] Cleary P W and Sawley M L2002 Appl. Math. Model. 26 89
[22] Li J, Langston P A, Webb C and Dyakowski T2004 Chem. Eng. Sci. 59 5917
[23] Langston P A, Al-Awamleh M A, Fraige F Y and Asmar B N2004 Chem. Eng. Sci. 59 425
[24] Kanzaki T, Acevedo M, Zuriguel I, Pagonabarraga I, Maza D and Hidalgo R C2011 Eur. Phys. J. E 34 133
[25] Liu S D, Zhou Z Y, Zou R P, Pinson D and Yu A B2014 Powder Technol. 253 70
[26] Ashour A, Wegner S, Trittel T, Börzsönyi T and Stannarius R2017 Soft Matter 13 402
[27] Börzsönyi T, Somfai E, Szabó B, Wegner S, Mier P, Rose G and Stannarius R2016 New J. Phys. 18 93017
[28] Tao H, Jin B and Zhong W 2011 2011 International Conference on Electric Technology and Civil Engineer, April 22-24, 2011 Lushan, China, p. 678
[29] Höhner D, Wirtz S and Scherer V2013 Powder Technol. 235 614
[30] Höhner D, Wirtz S and Scherer V2015 Powder Technol. 278 286
[31] Han Y, Jia F, Li G, Liu H, Li J and Chen P2019 Adv. Powder Technol. 30 1870
[32] Wang S, Zhuravkov M and Ji S2020 Soft Matter 16 7760
[33] Hafez A, Liu Q, Finkbeiner T, Alouhali R A, Moellendick T E and Santamarina J C2021 Sci. Rep. 11 3309
[34] Zhang Z, Liu Y, Zheng B, Sun P and Li R2022 Arab. J. Sci. Eng. 47 5721
[35] Ni R, Gantapara A P, De Graaf J, Van Roij R and Dijkstra M2012 Soft Matter 8 8826
[36] Zhao C, Cheng X, Peng Y and Li C2020 Powder Technol. 375 369
[37] Zhao C, Gao Q, Chen Y and Li C2021 Powder Technol. 387 481
[38] Chen X, Peng Y, Li C and Zhao C2022 Powder Technol. 407 117657
[39] Nedderman R M, Tüzün U, Savage S B and Houlsby G T1982 Chem. Eng. Sci. 37 1597
[40] Zhou Y, Ruyer P and Aussillous P2015 Phys. Rev. E 92 062204
[1] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[2] Discharge flow of granular particles through an orifice on a horizontal hopper: Effect of the hopper angle
Xin Wang(王欣), Hong-Wei Zhu(朱红伟), Qing-Fan Shi(史庆藩), Ning Zheng(郑宁). Chin. Phys. B, 2020, 29(4): 044502.
[3] A numerical study of dynamics in thin hopper flow and granular jet
Meng-Ke Wang(王梦柯), Guang-Hui Yang(杨光辉), Sheng Zhang(张晟), Han-Jie Cai(蔡汉杰), Ping Lin(林平), Liang-Wen Chen(陈良文), Lei Yang(杨磊). Chin. Phys. B, 2020, 29(4): 048102.
[4] Criteria for Beverloo's scaling law
Sheng Zhang(张晟), Ping Lin(林平), Guanghui Yang(杨光辉), Jiang-Feng Wan(万江锋), Yuan Tian(田园), Lei Yang(杨磊). Chin. Phys. B, 2019, 28(1): 018101.
[5] Influence of particle packing structure on sound velocity
Chuang Zhao(赵闯), Cheng-Bo Li(李成波), Lin Bao(鲍琳). Chin. Phys. B, 2018, 27(10): 104501.
[6] Graphene/Mo2C heterostructure directly grown by chemical vapor deposition
Rongxuan Deng(邓荣轩), Haoran Zhang(张浩然), Yanhui Zhang(张燕辉), Zhiying Chen(陈志蓥), Yanping Sui(隋妍萍), Xiaoming Ge(葛晓明), Yijian Liang(梁逸俭), Shike Hu(胡诗珂), Guanghui Yu(于广辉), Da Jiang(姜达). Chin. Phys. B, 2017, 26(6): 067901.
[7] A numerical study of contact force in competitive evacuation
Peng Lin(林鹏), Jian Ma(马剑), You-Ling Si(司有亮), Fan-Yu Wu(吴凡雨), Guo-Yuan Wang(王国元), Jian-Yu Wang(王建宇). Chin. Phys. B, 2017, 26(10): 104501.
[8] Discrete element crowd model for pedestrian evacuation through an exit
Peng Lin(林鹏), Jian Ma(马剑), Siuming Lo(卢兆明). Chin. Phys. B, 2016, 25(3): 034501.
[9] Influences of nitrogen flow rate on the structures and properties of Ti and N co-doped diamond-like carbon films deposited by arc ion plating
Zhang Lin (张林), Ma Guo-Jia (马国佳), Lin Guo-Qiang (林国强), Ma He (马贺), Han Ke-Chang (韩克昌). Chin. Phys. B, 2014, 23(4): 048102.
[10] Simulation of random mixed packing of different density particles
Li Yuan-Yuan(李元元), Xia Wei(夏伟),Zhou Zhao-Yao(周照耀), He Ke-Jing(何克晶), Zhong Wen-Zhen(钟文镇), and Wu Yuan-Biao(吴苑标). Chin. Phys. B, 2010, 19(2): 024601.
[11] Influence of the total gas flow rate on high rate growth microcrystalline silicon films and solar cells
Han Xiao-Yan(韩晓艳), Hou Guo-Fu(侯国付), Zhang Xiao-Dan(张晓丹), Wei Chang-Chun(魏长春), Li Gui-Jun(李贵君), Zhang De-Kun(张德坤), Chen Xin-Liang(陈新亮), Sun Jian(孙健), Zhang Jian-Jun(张建军), Zhao Ying(赵颖), and Geng Xin-Hua(耿新华). Chin. Phys. B, 2009, 18(8): 3563-3567.
[12] Influence of total gas flow rate on microcrystalline silicon films prepared by VHF-PECVD
Gao Yan-Tao (高艳涛), Zhang Xiao-Dan (张晓丹), Zhao Ying (赵颖), Sun Jian (孙健), Zhu Feng (朱峰), Wei Chang-Chun (魏长春), Chen Fei (陈飞). Chin. Phys. B, 2006, 15(5): 1110-1113.
No Suggested Reading articles found!