Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020701    DOI: 10.1088/1674-1056/ad0b00
GENERAL Prev   Next  

Response optimization of a three-axis sensitive SERF magnetometer for closed-loop operation

Yuanrui Zhou(周原锐)1,2, Yongze Sun(孙永泽)1,2, Xixi Wang(汪茜茜)1,2, Jianan Qin(秦佳男)1,2, Xue Zhang(张雪)3,4, and Yanzhang Wang(王言章)1,2,†
1 Key Laboratory of Geophysical Exploration Equipment(Ministry of Education), Jilin University, Changchun 130012, China;
2 College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130012, China;
3 Department of Physics, Johannes Gutenberg-Universitat Mainz, 55128 Mainz, Germany;
4 Helmholtz-Institut, GSI Helmholtzzentrum fur Schwerioneforschung, 55128 Mainz, Germany
Abstract  Most triaxial-vectorial magnetic field measurements with spin-exchange relaxation free (SERF) atomic magnetometer (AM) are based on the quasi-steady-state solution of the Bloch equation. However, the responding speed of these methods is greatly limited because the frequency of the modulation signal should be slow enough to ensure the validity of the quasi-steady-state solution. In this work, a new model to describe the response of the three-axis sensitive SERF AM with high modulation frequency is presented and verified. The response of alkali-atomic spin to high-frequency modulation field is further investigated by solving the Bloch equation in a modulation-frequency-dependence manner. This solution is well verified by our experiments and can offer a reference for selection of modulation frequencies. The result shows a potential to achieve a SERF AM operating in a geomagnetic field without heavy aluminum shielding when the modulation frequencies are selected properly.
Keywords:  triaxial-vectorial magnetic field measurement      spin-exchange relaxation free      atomic magnetometer  
Received:  27 June 2023      Revised:  29 October 2023      Accepted manuscript online:  09 November 2023
PACS:  07.55.-w (Magnetic instruments and components)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  85.70.Sq (Magnetooptical devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 42074216).
Corresponding Authors:  Yanzhang Wang     E-mail:  yanzhang@jlu.edu.cn

Cite this article: 

Yuanrui Zhou(周原锐), Yongze Sun(孙永泽), Xixi Wang(汪茜茜), Jianan Qin(秦佳男), Xue Zhang(张雪), and Yanzhang Wang(王言章) Response optimization of a three-axis sensitive SERF magnetometer for closed-loop operation 2024 Chin. Phys. B 33 020701

[1] Jiang M, Su H, Garcon A, Peng X and Budker D 2021 Nat. Phys. 17 1402
[2] Bloch I M , Ronen G, Shaham R, Katz O, Volansky T and Katz O 2022 Sci. Adv. 8 eabl8919
[3] Afach S, Buchler B C, Budker D, et al. 2021 Nat. Phys. 17 1396
[4] Ledbetter M, Savukov I, Budker D, Shah V, Knappe S, Kitching J, Michalak D, Xu S and Pines A 2008 Proc. Natl. Acad. Sci. USA 105 2286
[5] Boto E, Holmes N, Leggett J, et al. 2018 Nature 555 657
[6] Robinson J T, Pohlmeyer E, Gather M C, Kemere C, Kitching J E, Malliaras G G, Marblestone A, Shepard K L, Stieglitz T and Xie C 2019 IEEE Sensors J. 19 10163
[7] Dang H, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[8] Budker D and Romalis M V 2007 Nat. Phys. 3 227
[9] Wyllie R, Kauer M, Smetana G S, Wakai R T and Walker T G 2012 Phys. Medicine Biol. 57 2619
[10] Fang J, Li R, Duan L, Chen Y and Quan W 2015 Rev. Sci. Instrum. 86 073116
[11] Wang M L, Wang M B, Zhang G Y and Zhao K F 2016 Chin. Phys. B 25 060701
[12] Johnson C, Schwindt P D D and Weisend M 2010 Appl. Phys. Lett. 97 243703
[13] Li Y, Wang Z, Jin S, Yuan J and Luo H 2017 Sci. Rep. 7 43066
[14] Li Z, Wakai R T and Walker T G 2006 Appl. Phys. Lett. 89 134105
[15] Shah V and Romalis M V 2009 Phys. Rev. A 80 013416
[16] Seltzer S and Romalis M V 2004 Appl. Phys. Lett. 85 4804
[17] Li Z, Wakai R T and Walker T G 2006 Appl. Phys. Lett. 89 134105
[18] Patton B, Zhivun E, Hovde D and Budker D 2014 Phys. Rev. Lett. 113 013001
[19] Huang H, Dong H, Hu X, Chen L and Gao Y 2015 Appl. Phys. Lett. 107 182403
[20] Huang H, Dong H, Chen L and Gao Y 2016 Appl. Phys. Lett. 109 062404
[21] Seltzer S J 2008 Developments in Alkali-Metal Atomic Magnetometry (Ph.D. Dissertation) (Princeton University)
[1] A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field
Jiajie Li(李佳洁), Xiujie Fang(房秀杰), Renjie Li(李任杰), Baodong Chen(陈宝栋), Yueyang Zhai(翟跃阳), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(5): 053201.
[2] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[3] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[4] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[5] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[6] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[7] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[8] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[9] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[10] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[11] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[12] Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell
Rui Zhang(张锐), Zhi-Guo Wang(汪之国), Xiang Peng(彭翔), Wen-Hao Li(黎文浩), Song-Jian Li(李松健), Hong Guo(郭弘). Chin. Phys. B, 2017, 26(3): 030701.
[13] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[14] Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime
Ji-Qing Fu(伏吉庆), Peng-Cheng Du(杜鹏程), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2016, 25(1): 010302.
[15] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
No Suggested Reading articles found!