Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 023701    DOI: 10.1088/1674-1056/acf11d
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

In situ calibrated angle between the quantization axis and the propagating direction of the light field for trapping neutral atoms

Rui-Jun Guo(郭瑞军)1, Xiao-Dong He(何晓东)2, Cheng Sheng(盛诚)2, Kun-Peng Wang(王坤鹏)2, Peng Xu(许鹏)2, Min Liu(刘敏)2, Jin Wang(王谨)2, Xiao-Hong Sun(孙晓红)1, Yong Zeng(曾勇)1,†, and Ming-Sheng Zhan(詹明生)2
1 Henan Key Laboratory of Laser and Optoelectronic Information, National Center for International Joint Research of Electronic Materials and Systems, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of 85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constant-depth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit-Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields. Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.
Keywords:  quantization axis      trapping laser      angle      compensating magnetic fields  
Received:  29 April 2023      Revised:  23 July 2023      Accepted manuscript online:  17 August 2023
PACS:  37.10.Jk (Atoms in optical lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104414, 12122412, 12104464, and 12104413) and the China Postdoctoral Science Foundation (Grant No. 2021M702955).
Corresponding Authors:  Yong Zeng     E-mail:  ieyzeng@zzu.edu.cn

Cite this article: 

Rui-Jun Guo(郭瑞军), Xiao-Dong He(何晓东), Cheng Sheng(盛诚), Kun-Peng Wang(王坤鹏), Peng Xu(许鹏), Min Liu(刘敏), Jin Wang(王谨), Xiao-Hong Sun(孙晓红), Yong Zeng(曾勇), and Ming-Sheng Zhan(詹明生) In situ calibrated angle between the quantization axis and the propagating direction of the light field for trapping neutral atoms 2024 Chin. Phys. B 33 023701

[1] Bloch I, Dalibard J and Nascimbéne S 2012 Nat. Phys. 8 267
[2] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[3] Saffman M, Walker T G and Mölmer K 2010 Rev. Mod. Phys. 82 2313
[4] Negretti A, Treutlein P and Calarco T 2011 Quantum Inf. Process. 10 721
[5] Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001
[6] Weiss D S and Saffman M 2017 Phys. Today 70 44
[7] Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331
[8] Escher B M, de Matos Filho R L and Davidovich L 2011 Nat. Phys. 7 406
[9] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[10] Romalis M V and Fortson E N 1999 Phys. Rev. A 59 4547
[11] Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A and Meschede D 2003 Phys. Rev. Lett. 91 213002
[12] Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rauschenbeutel A and Meschede D 2005 Phys. Rev. A 72 023406
[13] Yu S, Xu P, He X D, Liu M, Wang J and Zhan M S 2013 Opt. Express 21 32130
[14] Carr A W and Saffman M 2016 Phys. Rev. Lett. 117 150801
[15] Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A and Zhan M S 2016 Phys. Rev. Lett. 117 123201
[16] Sheng C, He X D, Xu P, Guo R J, Wang K P, Xiong Z Y, Liu M, Wang J and Zhan M S 2018 Phys. Rev. Lett. 121 240501
[17] Xin M J, Leong W S, Chen Z L and Lan S Y 2019 Phys. Rev. Lett. 122 163901
[18] Guo R J, He X D, Sheng C, Yang J H, Xu P, Wang K P, Zhong J Q, Liu M, Wang J and Zhan M S 2020 Phys. Rev. Lett. 124 153201
[19] Cohen-Tannoudji C and Dupont-Roc J 1972 Phys. Rev. A 5 968
[20] Rosatzin M, Suter D and Mlynek J 1990 Phys. Rev. A 42 1839
[21] Zielonkowski M, Steiger J, Schünemann U, DeKieviet M and Grimm R 1998 Phys. Rev. A 58 3993
[22] Park C Y, Kim J Y, Song J M and Cho D 2002 Phys. Rev. A 65 033410
[23] Yang G Q, Yan H, Shi T, Wang J and Zhan M S 2008 Phys. Rev. A 78 033415
[24] Zhu K, Solmeyer N, Tang C and Weiss D S 2013 Phys. Rev. Lett. 111 243006
[25] Le Kien F, Schneeweiss P and Rauschenbeutel A 2013 Eur. Phys. J. D 67 92
[26] Schneeweiss P, Le Kien F and Rauschenbeutel A 2014 New J. Phys. 16 013014
[27] Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P and Rauschenbeutel A 2016 Phys. Rev. A 94 061401
[28] Dareau A, Meng Y, Schneeweiss P and Rauschenbeutel A 2018 Phys. Rev. Lett. 121 253603
[29] Leszczyński A, Mazelanik M, Lipka M, Parniak M, Dabrowski M and Wasilewski W 2018 Opt. Lett. 43 1147
[30] Wang K P, Zhuang J, He X D, Guo R J, Sheng C, Xu P, Liu M, Wang J and Zhan M S 2020 Chin. Phys. Lett. 37 044209
[31] Martínez-Dorantes M, Alt W, Gallego J, Ghosh S, Ratschbacher L, Völzke Y and Meschede D 2017 Phys. Rev. Lett. 119 180503
[32] Kwon M, Ebert M F, Walker T G and Saffman M 2017 Phys. Rev. Lett. 119 180504
[33] Martínez-Dorantes M 2016 Fast Non-destructive Internal State Detection of Neutral Atoms in Optical Potentials (Ph.D. Dissertation) (Bonn: Rheinischen Friedrich-Wilhelms-Universität Bonn)
[34] Schlosser N, Reymond G, Protsenko I and Grangier P 2001 Nature 411 1024
[35] Schlosser N, Reymond G and Grangier P 2002 Phys. Rev. Lett. 89 023005
[36] Breit G and Rabi I I 1931 Phys. Rev. 38 2082
[37] Moskovkin D L and Shabaev V M 2006 Phys. Rev. A 73 052506
[38] Zeng Y, Xu P, He X D, Liu Y Y, Liu M, Wang J, Papoular D J, Shlyapnikov G V and Zhan M S 2017 Phys. Rev. Lett. 119 160502
[1] Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4
Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(4): 047104.
[2] One-step quantum dialogue
Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2024, 33(3): 030302.
[3] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[4] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[5] Genuine entanglement under squeezed generalized amplitude damping channels with memory
Mazhar Ali. Chin. Phys. B, 2024, 33(2): 020307.
[6] Protected simultaneous quantum remote state preparation scheme by weak and reversal measurements in noisy environments
Mandal Manoj Kumar, Choudhury Binayak S., and Samanta Soumen. Chin. Phys. B, 2024, 33(2): 020309.
[7] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[8] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[9] Collision off-axis position dependence of relativistic nonlinear Thomson inverse scattering of an excited electron in a tightly focused circular polarized laser pulse
Yubo Wang(王禹博), Qingyu Yang(杨青屿), Yifan Chang(常一凡), Zongyi Lin(林宗熠), and Youwei Tian(田友伟). Chin. Phys. B, 2024, 33(1): 013301.
[10] Distinct behavior of electronic structure under uniaxial strain in BaFe2As2
Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(1): 017401.
[11] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[12] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[13] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[14] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[15] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
No Suggested Reading articles found!