Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 023601    DOI: 10.1088/1674-1056/ace036
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon

Xiao-Dong Liu(刘晓东)1, Qi-Liang Lu(卢其亮)1,†, and Qi-Quan Luo(罗其全)2,3
1 School of Physics and Material Science, Anhui University, Hefei 230601, China;
2 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
3 Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure. Superalkalis have low ionization energy. Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs. In this paper, the geometry, bonding properties, electronic structure, absorption spectrum, and nonlinear optical (NLO) properties of superalkaline $M_{3}$O ($M={\rm Li}$, Na)-doped cyclo[18]carbon were studied by using density functional theory. $M_{3}$O and the C$_{18}$ rings are not coplanar. The C$_{18}$ ring still exhibits alternating long and short bonds. The charge transfer between $M_{3}$O and C$_{18}$ forms stable [$M_{3}$O]$^{+}$[C$_{18}$]$^{-}$ ionic complexes. C$_{18}$$M_{3}$O ($M={\rm Li}$, Na) shows striking optical nonlinearity, i.e., their first- and second-order hyperpolarizability ($\beta_{\rm vec}$ and $\gamma_{\vert \vert }$) increase considerably at $\lambda = 1907$ nm and 1460 nm.
Keywords:  superalkaline doped cyclo[18]carbon      structure and electronic properties      nonlinear optical properties      density functional theory (DFT)  
Received:  18 April 2023      Revised:  04 June 2023      Accepted manuscript online:  21 June 2023
PACS:  36.40.-c (Atomic and molecular clusters)  
  36.40.Vz (Optical properties of clusters)  
Fund: Project supported by the Natural Science Foundation of Anhui Province (Grant No. 1908085MA12) and the National Natural Science Foundation of China (Grant No. 21703222).
Corresponding Authors:  Qi-Liang Lu     E-mail:  qllufd@vip.sina.com

Cite this article: 

Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全) Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon 2024 Chin. Phys. B 33 023601

[1] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Hoffmann R 1966 Tetrahcdron 22 521
[5] Diederich F, Rubin Y, Knobler C B, Whetten R L, Schriver K E, Houk K N and Li Y 1989 Science 245 1088
[6] Von Helden G, Gotts N G and Bowers M T 1993 Nature 363 60
[7] Parasuk V, Almlof J and Feyereisen M W 1991 J. Am. Chem. Soc. 113 1049
[8] Hutter J, Luethi H P and Diederich F 1994 J. Am. Chem. Soc. 116 750
[9] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L and Anderson H L 2019 Science 365 1299
[10] Scriven L M, Kaiser K, Schulz F, Sterling A J, Woltering S L, Gawel P, Christensen K E, Anderson H L and Gross L 2020 J. Am. Chem. Soc. 142 12921
[11] Shi B, Yuan L, Tang T, Yuan Y and Tang Y 2020 Chem. Phys. Lett. 741 136975
[12] Hussain S, Chen H, Zhang Z and Zheng H 2020 Chem. Comm. 56 2336
[13] Li S X, Chen D L, Zhang Z P, Long Z W and Qin S J 2020 Acta Phys. Sin. 69 103101 (in Chinese)
[14] Baryshnikov G V, Valiev R R, Kuklin A V, Sundholm D and Ågren H 2019 J. Phys. Chem. Lett. 10 6701
[15] Fedik N, Kulichenko M, Steglenko D and Boldyrev A I 2020 Chem. Comm. 56 2711
[16] Liu Z, Lu T and Chen Q 2020 Carbon 165 468
[17] Li M, Gao Z, Han Y, Zhao Y, Yuan K, Nagase S, Ehara M and Zhao X 2020 Phys. Chem. Chem. Phys. 22 4823
[18] Dai C, Chen D and Zhu J 2020 Chem. Asian J. 15 2187
[19] Charistos N D and Muñoz-Castro A 2020 Phys. Chem. Chem. Phys. 22 9240
[20] Nandi A, Solel E and Kozuch S 2020 Chem. Eur. J. 26 625
[21] Brémond É, Pérez-Jiménez Á J, Adamo C and Sancho-García J C 2019 J. Chem. Phys. 151 211104
[22] Zou W, Tao Y and Kraka E 2020 J. Chem. Phys. 152 154107
[23] Hong I, Ahn J, Shin H, Bae H, Lee H, Benali A and Kwon Y 2020 J. Phys. Chem. A 124 3636
[24] Fang S and Hu Y H 2021 Carbon 171 96
[25] Zhang L, Li H, Feng Y P and Shen L 2020 J. Phys. Chem. Lett. 11 2611
[26] Pereira Z S and da Silva E Z 2020 J. Phys. Chem. A 124 1152
[27] Liang Z, He T, An J, Xue H, Tang F and Fan D 2020 Int. J. Mod. Phys. B 34 2050138
[28] Jiang Y, Mattioli E J, Calvaresi M and Wang Z 2020 Chem. Comm. 56 11835
[29] Liu Z, Lu T and Chen Q 2020 Carbon 165 461
[30] Hou X, Ren Y, Fu F and Tian X 2020 Comput. Theor. Chem. 1187 112922
[31] Baryshnikov G V, Valiev R R, Nasibullin R T, Sundholm D, Kurten T and Ågren H 2020 J. Phys. Chem. A 124 10849
[32] Valiev R R, Baryshnikov G V, Nasibullin R T, Sundholm D and Ågren H 2020 J. Phys. Chem. C 124 21027
[33] Stasyuk A J, Stasyuk O A, Solá M and Voityuk A A 2020 Chem. Comm. 56 352
[34] Liu Z, Lu T, Yuan A, Wang X, Chen Q and Yan X 2021 Chem Asian J 16 2267
[35] Liu Z, Lu T and Chen Q 2021 Chem. Asian J. 16 56
[36] Lu T, Liu Z and Chen Q 2022 Chin. Phys. B 31 126101
[37] Heath J, O'brien S, Zhang Q, Liu Y, Curl R, Tittel F and Smalley R 1985 J. Am. Chem. Soc. 107 7779
[38] Wan Z, Christian J F and Anderson S L 1992 Phys. Rev. Lett. 69 1352
[39] Kubozono Y, Maeda H, Takabayashi Y, Hiraoka K, Nakai T, Kashino S, Emura, S, Ukita S and Sogabe T 1996 J. Am. Chem. Soc. 118 6998
[40] Thilgen C 2012 Angew. Chem. Int. Ed. 51 587
[41] Liu Z, Lu T and Chen Q 2021 Carbon 171 514
[42] Lu Q L, Ling Y and Luo Q Q 2022 Chem. Phys. Lett. 787 139221
[43] Liu Z, Wang X, Lu T, Yuan A and Yan X 2022 Carbon 187 78
[44] Zhao Q 2022 J. Mol. Model. 28 210
[45] Chen J, Sun L and Zhang R 2021 Phys. Chem. Chem. Phys. 23 17545
[46] Wang X, Liu Z, Yan X, Lu T, Wang H, Xiong W and Zhao M 2022 Phys. Chem. Chem. Phys. 24 7466
[47] Ling Y, Lu Q L and Luo Q Q 2021 Eur. Phys. J. D 75 229
[48] Wu Q, Teng Z and Zhu W 2022 J. Mater. Sci. 57 10197
[49] Chen J L and Zhang R Q 2021 Adv. Theory Simul. 4 2100022
[50] Yang Y F and Cederbaum L S 2022 Chem. Phys. Lett. 799 139554
[51] Bloodworth S, Sitinova G, Alom S, Vidal S, Bacanu G R, Elliott S J, Light M E, Herniman J M, Langley G J and Levitt M H 2019 Angew. Chem. Int. Ed. 58 5038
[52] Yang Y F and Cederbaum L S 2021 Phys. Chem. Chem. Phys. 23 11837
[53] Jiang Y, Wu Y, Deng J and Wang Z 2021 Phys. Chem. Chem. Phys. 23 8817
[54] Lide D R 2008 CRC Handbook of Chemistry and Physics (CRC: Boca Raton)
[55] Gutsev G L and Boldyrev A 1982 Chem. Phys. Lett. 92 262
[56] Srivastava A K, Pandey S K and Misra N 2016 Chem. Phys. Lett. 655-656 71
[57] Lin Z, Lu T and Ding X L 2017 J. Comput. Chem. 38 1574
[58] Frisch M, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT
[59] Mayer I 1983 Chem. Phys. Lett. 97 270
[60] Matito E, Poater J, Solá M, Duran M and Salvador P 2005 J. Phys. Chem. A 109 9904
[61] Wang Q Q, Li P, Gao T, Wan, H Y and Ao B Y 2016 Chin. Phys. B 25 063102
[62] Jacobsen H 2009 J. Comput. Chem. 30 1093
[63] Yang Y 2010 J. Phys. Chem. A 114 13257
[64] Dale S G and Johnson E R 2018 J. Phys. Chem. A 122 9371
[65] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[66] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. Model. 14 33
[67] Peng S and Zheng S 2019 Int. J. Quantum Chem. 119 e25942
[68] Jacquemin D, Perpete E A, Ciofini I and Adamo C 2011 Theor. Chem. Acc. 128 127
[69] Malik M and Michalska D 2014 Spectrochim. Acta A Mol. Biomol. Spectrosc. 125 431
[70] Thanthiriwatte K S, Hohenstein E G, Burns L A and Sherrill C D 2011 J. Chem. Theory Comput. 7 88
[71] Murray J S and Politzer P 2011 Wiley Interdiscip. Rev. Comput. Mol. Sci. 1 153
[72] Brinck T, Murray J S and Politzer P 1993 J. Chem. Phys. 98 4305
[73] Tuer A, Krouglov S, Cisek R, Tokarz D and Barzda V 2011 J. Comput. Chem. 32 1128
[1] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[4] Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(10): 108103.
[5] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[6] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[7] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[8] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[9] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[10] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[11] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[12] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[13] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[14] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[15] Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells
H Noverola-Gamas, L M Gaggero-Sager, O Oubram. Chin. Phys. B, 2019, 28(12): 124207.
No Suggested Reading articles found!