|
|
Efficient loading of cesium atoms in a magnetic levitated dimple trap |
Guoqing Zhang(张国庆)1, Guosheng Feng(冯国胜)2, Yuqing Li(李玉清)1,3,†, Jizhou Wu(武寄洲)1,3,‡, and Jie Ma(马杰)1,3 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 2 Department of Magnetic Resonance Imaging, The First Hospital of Shanxi Medical University, Taiyuan 030006, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We report a detailed study of magnetically levitated loading of ultracold 133Cs atoms in a dimple trap. The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two small waist beams crossing a horizontal plane. The magnetic levitation for the 133Cs atoms forms an effective potential for a large number of atoms in a high spatial density. Dependence of the number of atoms loaded and trapped in the dimple trap on the magnetic field gradient and bias field is in good agreement with the theoretical analysis. This method has been widely used to obtain the Bose-Einstein condensation atoms for many atomic species.
|
Received: 12 September 2023
Revised: 18 October 2023
Accepted manuscript online: 09 November 2023
|
PACS:
|
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
|
37.10.Gh
|
(Atom traps and guides)
|
|
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 62020106014, 62175140, 12034012, and 92165106), and the Natural Science Young Foundation of Shanxi Province (Grant No. 202203021212376). |
Corresponding Authors:
Yuqing Li, Jizhou Wu
E-mail: lyqing.2006@163.com;wujz@sxu.edu.cn
|
Cite this article:
Guoqing Zhang(张国庆), Guosheng Feng(冯国胜), Yuqing Li(李玉清), Jizhou Wu(武寄洲), and Jie Ma(马杰) Efficient loading of cesium atoms in a magnetic levitated dimple trap 2024 Chin. Phys. B 33 023702
|
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198 [2] Weber T, Herbig J, Mark M, Nägerl H C and Grimm R 2003 Science 299 232 [3] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [4] Pinkse P W H, Mosk A, Weidemüller M, Reyonlds M W, Hijmans T W and Walraven J T M 1997 Phys. Rev. A 78 990 [5] Chu S 1998 Rev. Mod. Phys. 70 685 [6] Jacob D, Mimoun E, De Sarlo L, Weitz M, Dalibard J and Gerbier F 2011 New J. Phys. 13 065002 [7] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z and Ketterle W 2003 Phys. Rev. Lett. 91 250401 [8] Uncu H, Tarhan D, Demiralp E and Müstecaphoglu Ö E 2008 Laser Phys. 18 331 [9] Diener R B, Wu B, Raizen M G and Niu Q 2002 Rev. Mod. Phys. 89 070401 [10] Zippilli S, Mohring B, Lutz E, Morigi G and Schleich W 2011 Phys. Rev. A 83 051602 [11] Parker N G, Proukakis N P, Leadbeater M and Adams C S 2003 Phys. Rev. Lett. 90 220401 [12] Allen A J, Jackson D P, Barenghi C F and Proukakis N P 2011 Phys. Rev. A 83 013613 [13] Jaksch D and Zoller P 2005 Ann. Phys. 315 52 [14] Dutta S and Mueller E J 2015 Phys. Rev. Lett. 91 013601 [15] Mewes M O, Andrews M R, Kurn D M, Durfee D S, Townsend C G and Ketterle W 1997 Phys. Rev. Lett. 78 582 [16] Immanuel Bloch, Theodor W, Hänsch and Tilman Esslinger 1999 Phys. Rev. Lett. 82 3008 [17] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Phys. Rev. A. 81 1051 [18] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [19] Guth A H 1981 Phys. Rev. D 23 347 [20] Oda I 2017 Phys. Rev. D 96 024027 [21] Ma Z, Foot C J and Cornish S L 2004 J. Phys. B: At. Mol. Opt. Phys. 37 3187 [22] Taie S, Watanabe S, Ichinose T and Takahashi Y 2016 Phys. Rev. Lett. 116 043202 [23] Garrett M C, Ratnapala A, van Ooijen E D, Vale C J, Weegink K, Schnelle S K, Vainio O, Heckenberg N R, Rubinsztein-Dunlop H and Davis M J 2011 Phys. Rev. A 83 013630 [24] Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J and Ketterle W 1998 Phys. Rev. A 81 2194 [25] Hammes M, Rychtarik D, Nägerl H C and Grimm R 2003 Phys. Rev. Lett. 90 173001 [26] McKenzie C, Denschlag J H, Häffner H, Browaeys A, de Araujo L E E, Fatemi F K, Jones K M, Simsarian J E, Cho D, Simoni A, Tiesinga E, Julienne P S, Helmerson K, Lett P D, Rolston S L and Phillips W D 2002 Phys. Rev. Lett. 88 120403 [27] Deb B and Agarwal G S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215203 [28] Junker M, Dries D, Welford C, Hitchcock J, Chen Y P and Hulet R G 2008 Phys. Rev. Lett. 101 060406 [29] Pellegrini P, Gacesa M and Côtó R 2008 Phys. Rev. Lett. 101 053201 [30] Köhler T, Góral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311 [31] Weber T 2003 Bose-Einstein Condensation of Optically Trapped Cesium (Ph.D. Dissertation) (Innsbruck, Austria: Innsbruck University) [32] Kraemer T, Herbig J, Mark M, Weber T, Chin C, Nägerl H C and Grimm R 2004 Appl. Phys. B 79 1013 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|