Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124205    DOI: 10.1088/1674-1056/acd3dd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Laser parameters affecting the asymmetric radiation of the electron in tightly focused intense laser pulses

Xing-Yu Li(李星宇)1, Wan-Yu Xia(夏婉瑜)2, You-Wei Tian(田友伟)3,†, and Shan-Ling Ren(任山令)3
1 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Management, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  The nonlinear radiation of the electron is a distinctive feature of the action of tightly focused linearly polarized lasers. In this paper, from the perspective of radiation symmetry, the effect of laser parameters on the electron radiation power in the time domain is studied systematically. An asymmetric bimodal structure is found in the time domain in the direction of the maximum radiation. For this special structure, an explanation is given based on the electron dynamics perspective. The structure is compared with the symmetric bimodal structure in the classical theory. The increase in laser intensity, while significantly increasing the radiated power of the electron, exacerbates the asymmetry of the electron radiation. The variation in the initial phase of the laser leads to a periodic variation in the electron motion, which results in a periodic extension of the electron spatial radiation with a period of π. Moreover, the existence of jump points with a phase difference of π in the range of 0-2π is found. The increase in pulse width reduces the radiated power, extends the radiation range, and alleviates the radiation asymmetry. The results in this paper contribute to the study of electron radiation characteristics in intense laser fields.
Keywords:  laser optics      nonlinear Thomson scattering      tightly focused laser      asymmetric radiation  
Received:  18 December 2022      Revised:  13 April 2023      Accepted manuscript online:  10 May 2023
PACS:  42.55.-f (Lasers)  
  41.60.Cr (Free-electron lasers)  
  42.65.-k (Nonlinear optics)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291), Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006), Natural Science Foundation of Shanghai (Grant No.11ZR1441300), and Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098), and sponsored by the Jiangsu Qing Lan Project and STITP Project (Grant No.CXXYB2022516).
Corresponding Authors:  You-Wei Tian     E-mail:  tianyw@njupt.edu.cn

Cite this article: 

Xing-Yu Li(李星宇), Wan-Yu Xia(夏婉瑜), You-Wei Tian(田友伟), and Shan-Ling Ren(任山令) Laser parameters affecting the asymmetric radiation of the electron in tightly focused intense laser pulses 2023 Chin. Phys. B 32 124205

[1] Hartemann F V and Kerman A K 1996 Phys. Rev. Lett. 76 624
[2] Strickland D and Mourou G 1985 Opt. Commun. 55 447
[3] Witte S, Zinkstok R Th, Hogervorst W and Eikema K S E 2005 Opt. Express 13 4903
[4] Maine P, Strickland D, Bado P, Pessot M and Mourou G 1988 IEEE J. Quantum Electron. 24 398
[5] Liu C P, Markus C K, Karen Z H, Carsten M and Christoph H K 2009 New J. Phys. 11 105045
[6] Rykovanov S G, Geddes C G R, Schroeder C G, Esarey E and Leemans W P 2016 Phys. Rev. Accel. Beams 19 030701
[7] Zheng Y L, Cai X M, Zhao X and Wang W 2022 Opt. Express 30 1627
[8] Zheng J, Sheng Z M, Zhang J, Wei Z Y and Yu W 2005 Acta Phys. Sin. 54 1018 (in Chinese)
[9] Suortti P and Thomlinson W 2003 Phys. Med. Biol. 48 R1
[10] Chi Z, Du Y, Huang W and Tang C 2020 J. Synchrotron Rad. 27 737
[11] Baltuška A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W and Krausz F 2003 Nature 421 593
[12] Kunwar Pal S, Rashmi A and Anil K M 2015 J. Apply. Phys. 118 104902
[13] Huang H S and Deng H X 2021 Optica 8 1020
[14] Zhang K J, Liu L, Zeng Q W, Gao T C, Hu S and Chen M 2019 Acta Phys. Sin. 68 194207 (in Chinese)
[15] Krajewska K, Twardy M and Kamínski J Z 2014 Phys. Rev. A 89 052123
[16] Szabolcs H, Sándor V and Attila C 2018 New J. Phys. 20 073043
[17] Wang Y B, Yang Q Y and Tian Y W 2023 Laser Phys. Lett. 20 035401
[18] Lee K, Kim B H and Kim D 2005 Phys. Plasmas 12 043107
[19] Chang Y F, Zeng Z R, Wang C, Long Z N and Tian Y W 2022 Appl. Opt. 61 6038
[20] Alexandru Popa 2008 J. Phys. B: At. Mol. Opt. Phys. 41 015601
[21] Hartemann F V, Troha A L, Luhmann N C Jr and Toffano Z 1996 Phys. Rev. E 54 2956
[22] Cao W, Lan P F and Lu P X 2006 Acta Phys. Sin. 55 2115 (in Chinese)
[23] Lü C Y, Chen Z Y, Zhu W X and Tian Y W 2022 Laser Technology 46 422
[24] Salamin Y I, Mocken G R and Keitel C H 2002 Phys. Rev. Spec. Top.-Ac. 5 101301
[25] Li J X, Zang W P and Tian J G 2010 Appl. Phys. Lett. 96 031103
[26] Salamin Y I and Keitel C H 2002 Phys. Rev. Lett. 88 095005
[27] Lee K, Cha Y H, Shin M S, Kim B H and Kim D 2003 Phys. Rev. E 67 026502
[28] Vais O E, Bochkarev S G and Bychenkov V Y 2016 Plasma Phys. Rep. 42 818
[29] Lan P F, Lu P X and Cao W 2007 Acta Phys. Sin. 56 2482 (in Chinese)
[30] He X K, Li R X, Shuai B, Ge X C and Xu Z Z 2005 Phys. Plasmas 12 073101
[31] Chang Y F, Wang C, Wang Y B, Long Z N, Zeng Z R and Tian Y W 2022 Laser Phys. Lett. 19 065301
[32] Mohammad Vaziri, Mojtaba Golshani, Sozha Sohaily and Alireza Bahrampour 2015 Phys. Plasmas 22 033118
[1] Collision off-axis position dependence of relativistic nonlinear Thomson inverse scattering of an excited electron in a tightly focused circular polarized laser pulse
Yubo Wang(王禹博), Qingyu Yang(杨青屿), Yifan Chang(常一凡), Zongyi Lin(林宗熠), and Youwei Tian(田友伟). Chin. Phys. B, 2024, 33(1): 013301.
[2] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[3] Influence of acceleration on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses
Yifan Chang(常一凡), Yubo Wang(王禹博), Chang Wang(王畅), Yuting Shen(申雨婷), and Youwei Tian(田友伟). Chin. Phys. B, 2023, 32(6): 063201.
[4] Analysis of CV mode selected resonator based on vectorial eigenvector method
You-You Hu(胡友友), Jian-Tai Dou(窦健泰), Bo-Wei Luo(罗博伟), Chang-Yu He(贺昌玉). Chin. Phys. B, 2019, 28(2): 024210.
[5] Accuracy design of ultra-low residual reflection coatingsfor laser optics
Huasong Liu(刘华松), Xiao Yang(杨霄), Lishuan Wang(王利栓), Hongfei Jiao(焦宏飞), Yiqin Ji(季一勤), Feng Zhang(张锋), D an Liu(刘丹丹), Chenghui Jiang(姜承慧), Yugang Jiang(姜玉刚), Deying Chen(陈德应). Chin. Phys. B, 2017, 26(7): 077801.
[6] Dynamical properties of total intensity fluctuation spectrum in two-mode Nd:YVO4 microchip laser
Zhang Shao-Hui (张韶辉), Zhang Shu-Lian (张书练), Tan Yi-Dong (谈宜东), Sun Li-Qun (孙利群). Chin. Phys. B, 2015, 24(12): 124203.
No Suggested Reading articles found!