Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 128102    DOI: 10.1088/1674-1056/acf03d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Diamond growth in a high temperature and high pressure Fe-Ni-C-Si system: Effect of synthesis pressure

Yang Liu(刘杨)1, Zhiwen Wang(王志文)1, Bowei Li(李博维)1, Hongyu Zhao(赵洪宇)1, Shengxue Wang(王胜学)1, Liangchao Chen(陈良超)2,§, Hongan Ma(马红安)1,†, and Xiaopeng Jia(贾晓鹏)1,‡
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  Pressure is one of the necessary conditions for diamond growth. Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds. This work reports the morphology, impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures. Fourier transform infrared spectroscopy shows that with the increase of pressure, the nitrogen content in the C- center inside the diamond crystal decreases. X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder. Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm-1 to 1331.25 cm-1, resulting in a decrease in internal stress in the crystal. The half-peak width decreased from 5.41 cm-1 to 5.26 cm-1, and the crystallinity of the silicon-doped diamond crystals improved, resulting in improved quality. This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.
Keywords:  silicon-doped diamond      crystal quality      pressure effect      nitrogen content  
Received:  18 June 2023      Revised:  07 August 2023      Accepted manuscript online:  15 August 2023
PACS:  81.05.ug (Diamond)  
  61.50.-f (Structure of bulk crystals)  
  81.40.Vw (Pressure treatment)  
  91.62.La (Carbon cycling, nitrogen cycling)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.51872112 and 51772120).
Corresponding Authors:  Liangchao Chen, Hongan Ma, Xiaopeng Jia     E-mail:  chenlc@zzu.edu.cn;maha@jlu.edu.cn;jiaxp@jlu.edu.cn

Cite this article: 

Yang Liu(刘杨), Zhiwen Wang(王志文), Bowei Li(李博维), Hongyu Zhao(赵洪宇), Shengxue Wang(王胜学), Liangchao Chen(陈良超), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏) Diamond growth in a high temperature and high pressure Fe-Ni-C-Si system: Effect of synthesis pressure 2023 Chin. Phys. B 32 128102

[1] Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B and Vincze L 2014 Nature 507 221
[2] Bureau H, Frost D J, Bolfan-Casanova N, Leroy C, Esteve I and Cordier P 2016 Lithos 265 4
[3] Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson D G, Pamato M G, Alvaro M, Peruzzo L, Gurney J J, Moore A E and Davidson J 2018 Nature 555 237
[4] Mashino I, Miozzi F, Hirose K, Morard G and Sinmyo R 2019 Earth and Planetary Science Letters 515 135
[5] Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, Wu Y M, Ma H A and Jia X P 2019 Chin. Phys. B 28 028103
[6] Fang S, Ma H, Cai Z H, Wang C X, Fang C, Zhao Z D, Lu Z Y, Wang Y K, Chen L and Jia X 2020 CrystEngComm 22 602
[7] Fang S, Ma H, Cai Z h, Wang C X, Fang C, Lu Z, Wang Y K, Chen L and Jia X 2020 CrystEngComm 22 3854
[8] Kanda H, Akaishi M and Yamaoka S 1999 Diam. Relat. Mater. 8 1441
[9] Fang C, Shen W, Zhang Y, Mu P, Zhang Z and Jia X 2019 Crystal Growth & Design 19 3955
[10] Palyanov Y, Kupriyanov I, Borzdov Y, Nechaev D and Bataleva Y 2017 Crystals 7 119
[11] Lu Z, Zhao H, Wang Y, Fang S, Cai Z, Wang Z, Ma H A, Chen L, Jia H and Jia X 2021 Lithos 404--405 106470
[12] Cai Z, Li M, Chen L, Fang S, Wang Z, Zhao H, Ma H and Jia X 2022 CrystEngComm 24 1773
[13] Fang S, Wang Y, Chen L, Lu Z, Cai Z, Fang C, Zhao Z, Ma H and Jia X 2021 CrystEngComm 23 1406
[101] Lv R, Yang X, Yang D, Niu C, Zhao C, Qin J, Zang J, Dong F, Dong L and Shan C 2021 Chin. Phys. Lett. 38 076101
[14] Qin Y K, Xiao H Y, Liu L N, Sun R R, Hu Q B, Bao Z G, Zhang Y S, Li S S and Jia X P 2019 Acta Phys. Sin. 68 020701 (in Chinese)
[15] Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A and Xiao H Y 2018 Acta Phys. Sin. 67 168101 (in Chinese)
[16] Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S and Jia X P 2018 Acta Phys. Sin. 67 140702 (in Chinese)
[17] Guo M M, Li S S, Hu M H, Su T C, Wang J Z, Gao G J, You Y and Nie Y 2020 Chin. Phys. B 29 018101
[102] Luo K, Li B, Sun L, Wu Y, Ge Y, Liu B, He J, Xu B, Zhao Z and Tian Y 2022 Chin. Phys. Lett. 39 036301
[18] Li Y, Wang Y, Li S S, Li Z B, Luo K W, Ran M W and Song M S 2019 Acta Phys. Sin. 68 098101 (in Chinese)
[103] Wan L, Mu C, Liu X, Cheng S, Wang Q, Li L, Li H and Zhou G 2022 Chin. Phys. Lett. 39 036801
[19] Cai Z, Li B, Chen L, Wang Z, Fang S, Wang Y, Ma H and Jia X 2022 Chin. Phys. B 31 108104
[20] Sheng L X, Chen C K, Jiang M Y, Li X and Hu X J 2020 Chin. Phys. B 29 088101
[21] Ekimov E A and Kondrin M V 2017 Physics-Uspekhi 60 539
[22] Hu X J and Li N 2013 Chin. Phys. Lett. 30 088102
[23] Guo L, Ma H, Chen L, Chen N, Miao X, Wang Y, Fang S, Yang Z, Fang C and Jia X 2018 CrystEngComm 20 5457
[24] Chen N, Ma H, Chen L, Yan B, Fang C, Liu X, Li Y, Guo L, Chen L and Jia X 2018 International Journal of Refractory Metals and Hard Materials 71 141
[25] Liang Z Z, Kanda H, Jia X, Ma H A, Zhu P W, Guan Q F and Zang C Y 2006 Carbon 44 913
[26] Fallon P J, Brown L M, Barry J C and Bruley J 1995 Philos. Mag. A 72 21
[27] Pal'Yanov N, Sokol A G, Borzdov M and Khokhryakov A F 2002 Lithos 60 145
[28] Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J and Jia X 2008 Diam. Relat. Mater. 17 180
[29] Ashfold M N R, Goss J P, Green B L, May P W, Newton M E and Peaker C V 2020 Chem. Rev. 120 5745
[30] Yan B, Jia X, Fang C, Chen N, Li Y, Sun S and Ma H A 2016 International Journal of Refractory Metals and Hard Materials 54 309
[31] Fang S, Ma H, Wang Z, Yang Z, Cai Z H, Ding L, Miao X, Chen L and Jia X 2019 CrystEngComm 21 6010
[32] Ahmed M H, Byrne J A, Mclaughlin J and Ahmed W 2013 J. Biomater. Nanobiotechnol. 04 194
[33] Mangeney C, Qin Z, Dahoumane S A, Adenier A, Herbst F, Boudou J P, Pinson J and Chehimi M M 2008 Diam. Relat. Mater. 17 1881
[34] Ténégal F, Rocque A G d l, Dufour G, Sénémaud C, Doucey B, Bahloul-Hourlier D, Goursat P, Mayne M and Cauchetier M 2000 J. Electron Spectrosc. Relat. Phenomena 109 241
[35] Wang Z Y, Dong L H, Wang D S and Dong Y H 2012 Precis. Eng. 36 162
[36] Miao X, Chen L, Ma H, Fang C, Guo L, Wang Z, Yang Z, Zhao Z and Jia X 2019 CrystEngComm 21 3961
[37] Wang J, Li S, Hu M, Su T and Nie Y 2020 International Journal of Refractory Metals and Hard Materials 87 105150
[38] Catledge S A, Vohra Y K, Ladi R and Rai G 1996 Diam. Relat. Mater. 5 1159
[1] Effects of oxygen/nitrogen co-incorporation on regulation of growth and properties of boron-doped diamond films
Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(11): 118102.
[2] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[3] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[4] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[5] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[6] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[7] Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors
Bosen Wang(王铂森), Yaoqing Zhang(张尧卿), Shuxiang Xu(徐淑香), Kento Ishigaki, Kazuyuki Matsubayashi, Jin-Guang Cheng(程金光), Hideo Hosono, Yoshiya Uwatoko. Chin. Phys. B, 2019, 28(10): 107401.
[8] Pressure effect on magnetic phase transition and spin-glass-like behavior of GdCo2B2
Guang-Hui Hu(胡光辉), Ling-Wei Li(李领伟), Umehara Izuru. Chin. Phys. B, 2016, 25(6): 067501.
[9] Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition
Li Liang (李亮), Yang Lin-An (杨林安), Xue Jun-Shuai (薛军帅), Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(6): 067103.
[10] Structural stability and electrical properties of AlB2-type MnB2 under high pressure
Meng Xiang-Xu (孟祥旭), Fan Jing (范靖), Bao Kuo (包括), Li Fang-Fei (李芳菲), Huang Xiao-Li (黄晓丽), Li Yan (李岩), Tian Fu-Bo (田夫波), Duan De-Fang (段德芳), Jin Xi-Lian (靳锡联), Zhu Pin-Wen (朱品文), He Zhi (何志), Zhou Qiang (周强), Gao Chun-Xiao (高春晓), Liu Bing-Bing (刘冰冰), Cui Tian (崔田). Chin. Phys. B, 2014, 23(1): 016102.
[11] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[12] Density-functional theory study of the effect of pressure on the elastic properties of CaB6
Han Han (韩晗). Chin. Phys. B, 2013, 22(7): 077101.
[13] Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering
Wang Dang-Hui (王党会), Xu Sheng-Rui (许晟瑞), Hao Yue (郝跃), Zhang Jin-Cheng (张进成), Xu Tian-Han (许天旱), Lin Zhi-Yu (林志宇), Zhou Hao (周昊), Xue Xiao-Yong (薛晓咏 ). Chin. Phys. B, 2013, 22(2): 028101.
[14] Hydrostatic pressure effect on the electron mobility in a ZnSe/Zn1-xCdx Se strained heterojunction
Bai Xian-Ping (白鲜萍), Ban Shi-Liang (班士良). Chin. Phys. B, 2008, 17(12): 4606-4613.
[15] Pressure effects in AlAs/InxGa1-xAs/GaAs resonant tunnelling diodes for application in micromachined sensors
Wang Jian(王建), Zhang Wen-Dong(张文栋), Xue Chen-Yang(薛晨阳), Xiong Ji-Jun(熊继军), Liu Jun(刘俊), and Xie Bin(谢斌) . Chin. Phys. B, 2007, 16(4): 1150-1154.
No Suggested Reading articles found!