CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds |
Zhihong Hao(郝志红)1,†, Hui Liu(刘辉)2, and Juguo Zhang(张聚国)3 |
1 School of Rare Earth and New Materials Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; 2 School of Intelligent Manufacturing and Automotive Engineering, Gannan University of Science and Technology, Ganzhou Innovation Center of Rare earth Permanent Magnet Material Advanced Manufacturing and Intelligent Equipment Technology, Ganzhou 341000, China; 3 School of Rare Earth and New Materials Engineering, Gannan University of Science and Technology, Ganzhou Key Laboratory of Advanced Processing and Technology Optimization of High Performance Tungsten Base Materials, Ganzhou 341000, China |
|
|
Abstract We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects (MCEs) of Er5Si3Bx (x=0.3, 0.6) compounds. The Er5Si3Bx (x=0.3, 0.6) compounds crystalize in a Mn5Si3 type hexagonal structure (space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er5Si3Bx (x=0.3, 0.6) compounds, with maximum magnetic entropy change (-ΔSMmax) and refrigeration capacity of 10.2 J·kg-1·K-1, 356.3 J/kg and 11.5 J·kg-1·K-1, 393.3 J/kg under varying magnetic fields 0-5 T, respectively. Remarkably, the δTFWHM values (the temperature range corresponding to 1/2×|-ΔSMmax|) of Er5Si3Bx (x=0.3, 0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators.
|
Received: 26 May 2023
Revised: 03 July 2023
Accepted manuscript online: 12 July 2023
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.47.Np
|
(Metals and alloys)
|
|
Fund: This work was supported by Science and Technology Research Project for Education Department of Jiangxi Province, China (Grant No. GJJ218509). |
Corresponding Authors:
Zhihong Hao
E-mail: love_hzh@126.com
|
Cite this article:
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国) Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds 2023 Chin. Phys. B 32 117501
|
[1] Cheng W, Ding D and Lei X 2016 Chin. Phys. Lett. 33 16102 [2] Hu F, Zhang G Y, Huang Y J, et al. 2014 Chin. Phys. Lett. 31 057501 [3] Yu X Y, Feng H L, Gu X, et al. 2019 Acta Phys. Sin. 68 247201 (in Chinese) [4] Li G Q, Ke Y J, Zhang H B, et al. 2019 Acta Phys. Sin. 68 217501 (in Chinese) [5] Cao Y Z and Zhao Y 2019 Acta Phys. Sin. 68 168502 (in Chinese) [6] Chen X and Zhang M H 2018 Acta Phys. Sin. 67 197501 (in Chinese) [7] Tang B Z, Liu X P, Li D M, Yu P and Xia L 2020 Chin. Phys. B 29 056401 [8] Ma Y F, Tang B Z, Xia L and Ding D 2016 Chin. Phys. B 33 126101 [9] Bao L F, Huang W D and Ren Y J 2016 Chin. Phys. Lett. 33 77502 [10] Tian L, Gong J J, Fu Q, Gao X Q, Mo Z J, Li Z X and Shen J 2023 J. Magn. Magn. Mater. 566 170194 [11] Tian L, Fu Q, Mo Z J, Sun H, Li Z X, Shen J and Liu G D 2023 J. Magn. Magn. Mater. 576 170770 [12] Cheng J H, Wang Y G and Xie D 2015 Chin. Phys. Lett. 32 17503 [13] Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101 [14] Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409 [15] Ding D, Wang P, Guan Q, et al. 2013 Chin. Phys. Lett. 30 096104 [16] Hao Z H, Wang H Y, Zhang Q, et al. 2018 Acta Phys. Sin. 67 247502 (in Chinese) [17] Zhang H, Xing C F, Long K W, et al. 2018 Acta Phys. Sin. 67 207501 (in Chinese) [18] Yang J J, Zhao J L, Xu L, et al. 2018 Acta Phys. Sin. 67 077501 (in Chinese) [19] Guo D, Zhang Y K, Wang Y M, et al. 2020 Chin. Phys. B 29 107502 [20] Ding Y H, Meng F Z and Wang L C 2020 Chin. Phys. B 29 077501 [21] Hao J Z, Hu F X, Yu Z B, et al. 2020 Chin. Phys. B 29 047504 [22] Liu P F, Peng J, Xue M Q, et al. 2020 Chin. Phys. B 29 047503 [23] Jiang W H, Mo Z J and Luo J W 2020 Chin. Phys. B 29 037502 [24] Yu T L, Yu X Y, Yang E, et al. 2019 Chin. Phys. B 28 067501 [25] Yao G Q, Sun S Y, Yang J C, Wu H F, Wang Q, Zhu J and Cui W B 2021 Scr. Mater. 194 113649 [26] Takeya H, Pecharsky V K, Gschneidner K A and Moorman J O 1994 Appl. Phys. Lett. 64 2739 [27] Zhang Y K, Xu P, Zhu J, Yan S M, Zhang J C and Li L W 2023 Mater. Today Phys. 32 101031 [28] Sun H, Wang J F, Tian L, Gong J J, Mo Z J, Shen J and Shen B G 2022 Chin. Phys. B 31 117503 [29] Zhang Y K, Guo D, Li H D, Geng S H, Wang J, Li X, Xu H, Ren Z M and Wilde G 2018 J. Alloys Compd. 733 40 [30] Feng J Q, Liu Y H, Sui J H, He A N, Xia W X, Wang W H and Wang J Q 2021 Mater. Today Phys. 21 100528 [31] Li L W, Yuan Y, Qi Y, Wang Q and Zhou S Q 2017 Mater. Res. Lett. 6 67 [32] Balfour E A, Shang Y F, Zheng Q, Cao Y T, Fu H, E-Gendy A A and Hadimani R L 2018 J. Magn. Magn. Mater. 467 108 [33] Zhang H, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G 2012 Solid State Commun. 152 1127 [34] Semitelou I P, Yakinthos J K and Roudaut E 1995 J. Phys. Chem. Solids 56 891 [35] Roger J, Yahia M B, Babizhetskyy V, Bauer J, Cordier S, Guerin R, Hiebl K, Rocquefelte X, Saillard J Y and Halet J F 2006 J. Solid State Chem. 179 2310 [36] Mohapatra N, Mukherjee K, Iyer K K and Sampathkumaran E V 2011 J. Phys.:Condens. Matter 23 496001 [37] Zhang H, Wu Y Y, Long Y, Wang H S, Zhong K X, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 116 213902 [38] Hermes W, Rodewakd U C and Pottgen R J Appl. Phys. 108 113919 [39] Li D X, Yamamura T, Nimori S, Homma Y and Honda F 2013 Appl. Phys. Lett. 102 152409 [40] Fukuma H, Suzuki T and Kasuya T 1985 J. Magn. Magn. Mater. 52 7 [41] Banerjee B K 1964 Phys. Lett. 12 16 [42] Franco V, Blázquez J S and Upus J J 2018 Prog. Mater. Sci. 93 112 [43] Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387 [44] Griffith L D, Mudryk Y, Slaughter J and Pecharsky V K J Appl. Phys. 123 034902 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|