Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114208    DOI: 10.1088/1674-1056/acf44b
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Topological resonators based on hexagonal-star valley photonic crystals

Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元)
School of Physis, Northwest University, Xi'an 710127, China
Abstract  In valley photonic crystals, topological edge states can be gained by breaking the spatial inversion symmetry without breaking time-reversal symmetry or creating pseudo-spin structures, making highly unidirectional light transmission easy to achieve. This paper presents a novel physical model of a hexagonal-star valley photonic crystal. Simulations based on the finite element method (FEM) are performed to investigate the propagation of TM polarized mode and its application to ring resonators. The results show that such a topologically triangular ring resonator exhibits an optimum quality factor Q of about 1.25× 104, and Q has a maximum value for both frequency and the cavity length L. Our findings are expected to have significant implications for developing topological lasers and wavelength division multiplexers.
Keywords:  valley photonic crystals      triangular resonant cavity      topological edge state      unidirectional transmission  
Received:  30 June 2023      Revised:  17 August 2023      Accepted manuscript online:  28 August 2023
PACS:  42.70.Qs (Photonic bandgap materials)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174307).
Corresponding Authors:  Xinyuan Qi     E-mail:  qixycn@nwu.edu.cn

Cite this article: 

Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元) Topological resonators based on hexagonal-star valley photonic crystals 2023 Chin. Phys. B 32 114208

[1] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
[2] Dong J W, Chen X D, Zhu H, Wang Y and Zhang X 2017 Nat. Mater. 16 298
[3] Chen M L N, Jiang L J, Lan Z H and Sha W E I 2020 Opt. Express 28 14428
[4] Chen Q L, Zhang L, He M J, Wang Z J, Lin X, Gao F, Yang Y H, Zhang B L and Chen H 2019 Adv. Opt. Mater. 7 1900036
[5] Chen X D, Shi F L, Liu H, Lu J C, Deng W M, Dai J Y, Cheng Q and Dong J W 2018 Phys. Rev. Appl. 10 044002
[6] Ma T and Shvets G 2016 New J. Phys. 18 025012
[7] Gao F, Xue H R, Yang Z J, Lai K, Yu Y, Lin X, Chong Y D, Shvets G and Zhang B 2018 Nat. Phys. 14 140
[8] Xue H R, Gao F, Yu Y, Chong Y D, Shvets G and Zhang B L 2018 arXiv:1811.00393
[9] Wong S, Saba M, Hess O and Oh S S 2020 Phys. Rev. Res. 2 012011
[10] Deng W M, Chen X D, Chen W J, Zhao F L and Dong J W 2019 Nanophotonics 8 833
[11] Noh J, Huang S, Chen K P and Rechtsman M C 2018 Phys. Rev. Lett. 120 063902
[12] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
[13] Ao X Y, Lin Z F and Chan C T 2009 Phys. Rev. B 80 033105
[14] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233
[15] Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W and Chan C T 2014 Nat. Commun. 5 5782
[16] Gao W L, Lawrence M, Yang B, Liu F, Fang F Z, Béri B and Zhang S 2015 Phys. Rev. Lett. 114 037402
[17] Ma T, Khanikaev A B, Mousavi S H and Shvets G 2015 Phys. Rev. Lett. 114 127401
[18] Wei G C, Liu Z Z, Wu H Z, Wang L C, Wang S X and Xiao J J 2022 Opt. Lett. 47 3007
[19] Liu T J, Kobayashi N, Ikeda K, Ota Y and Iwamoto S 2022 ACS Photonics 9 1621
[20] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Wang Y and Xu X 2016 Nat. Rev. Mater. 1 16055
[21] Khattou S, Rezzouk Y E, Ghafiani M, Amrani M, Elaouni M, Talbi A, Akjouj A and Djafari-Rouhani B 2023 Phys. Rev. B 107 125405
[22] Mittal S, DeGottardi W and Hafezi M 2018 Opt. Photon. News 29 36
[23] Ortmann F, Roche S and Valenzuela S O 2015 Fundamentals and Perspectives (Chichester:John Wiley and Sons) p. 10
[24] Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D and Soljačić M 2016 Nat. Phys. 12 337
[25] Fang K J, Yu Z F and Fan S H 2012 Phys. Rev. Lett. 108 153901
[26] Yang Y T, Jiang H and Hang Z H 2018 Sci. Rep. 8 1588
[27] Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P and Chen Y F 2018 Nat. Commun. 9 3072
[28] Xiong Z, Lin Z K, Wang H X, Zhang X J, Lu M H, Chen Y F and Jiang J H 2020 Phys. Rev. B 102 125144
[29] Chen M L, Jiang L J, Lan Z H and Sha W E I 2019 IEEE Trans. Antennas Propag. 68 609
[30] Gao F, Gao Z, Shi X H, Yang Z J, Lin X, Xu H Y, Joannopoulos J D, Soljačić M, Chen H S, Lu L, Chong Y D and Zhang B L 2016 Nat. Commun. 7 11619
[31] Tsvirkun V, Surrente A, Raineri F, Beaudoin G, Raj R, Sagnes I, Robert-Philip I and Braive R 2015 Sci. Rep. 5 16526
[32] Li J S 2010 Opt. Commun. 283 2647
[33] Lin H and Lu L 2020 Light Sci. Appl. 9 202
[34] Tang G C, Huang Y H, Chen J F, Li Z Y and Liang W Y 2022 Opt. Express 30 28762
[35] Krasnov A I, Pankin P S, Buzin D S, Romanenko G A, Sutormin V S, Zelenov F V, Masyugin A N, Volochaev M N, Vetrov S Y and Timofeev I V 2023 Opt. Lett. 48 1666
[36] Hu C, Ji J Y, Zhou T, Wan C T, Xu C P and Zhu A J 2022 Silicon 15 2137
[37] Ryu T, Kim H M, Ki S W, Lee Y H and Yang J K 2023 Phys. Rev. Appl. 19 054053
[38] Wang Y D, Haraguchi M, Zhang X B, Wang P P and Sun S F 2023 Coatings 13 972
[39] Song B S, Noda S, Asano T and Akahane Y 2005 Nat. Mater. ±b4 207
[40] Kim S, Lee J, Jeon H and Kim H J 2009 Appl. Phys. Lett. 94 133503
[41] Quan Q M and Loncar M 2011 Opt. Express 19 18529
[42] Gao G, Zhang Y, Zhang H, Wang Y, Huang Q Z and Xia J S 2016 Sci. Rep. 6 19999
[43] Shao Z K, Chen H Z, Wang S, Mao X R, Yang Z Q, Wang S L, Wang X X, Hu X and Ma R M 2020 Nat. Nanotechnol. 15 67
[44] Bandres M A, Wittek S, Harari G, Parto M, Ren J H, Segev M, Christodoulides D N and Khajavikhan M 2018 Science 359 6381
[45] He X T, Liu J W, Shi F L, Shen K, Chen W J, Chen X D and Dong J W 2021 Sci. China-Phys. Mech. Astron. 65 284212
[46] Liu J W, Shi F L, He X T, Tang G J, Chen W J, Chen X D and Dong J W 2021 Adv. Phys. X 6 1905546
[47] Xue H R, Yang Y H and Zhang B L 2021 Adv. Photon. Res. 2 2100013
[1] High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团). Chin. Phys. B, 2023, 32(7): 074205.
[2] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[3] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[4] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
No Suggested Reading articles found!