Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114207    DOI: 10.1088/1674-1056/ace8f7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-power xenon lamp-pumped Er:YAP pulse laser operated in free-running and acousto-optical Q-switching modes

Cong Quan(权聪)1,2,3, Dunlu Sun(孙敦陆)1,2,3,†, Huili Zhang(张会丽)1,2,3, Jianqiao Luo(罗建乔)1,2,3, Zhiyuan Han(韩志远)1,4, Yang Qiao(乔阳)1,4, Yuwei Chen(陈玙威)1,4, Zhentao Wang(王镇涛)1,4, Maojie Cheng(程毛杰)1,4, and Qingli Zhang(张庆礼)1,2,3
1 Crystal Laboratory of Laser Technology Research Center, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 Advanced Laser Technology Laboratory of Anhui Province, National University of Defense Technology, Hefei 230037, China;
3 Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Hefei 230031, China;
4 Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
Abstract  We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 mJ can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices. A Q-switched laser is demonstrated by using the TeO2 crystal, the maximum output energies of 11.5 mJ and 3.5 mJ are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 kW and 17.2 kW, respectively. The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2 acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.
Keywords:  Er:YAP crystal      xenon lamp-pumped      mid-infrared laser      acousto-optical Q-switching  
Received:  13 May 2023      Revised:  18 July 2023      Accepted manuscript online:  20 July 2023
PACS:  42.70.Hj (Laser materials)  
  42.55.-f (Lasers)  
  42.60.Gd (Q-switching)  
Fund: This work was supported by the Natural Science Foundation of Anhui Province (Grant No. 2208085QF217), the National Natural Science Foundation of China (Grant No. 52102012), and the Hefei Institutes of Physical Science (HFIPS) Director’s Fund (Grant No. YZJJ2022QN08).
Corresponding Authors:  Dunlu Sun     E-mail:  dlsun@aiofm.ac.cn

Cite this article: 

Cong Quan(权聪), Dunlu Sun(孙敦陆), Huili Zhang(张会丽), Jianqiao Luo(罗建乔), Zhiyuan Han(韩志远), Yang Qiao(乔阳), Yuwei Chen(陈玙威), Zhentao Wang(王镇涛), Maojie Cheng(程毛杰), and Qingli Zhang(张庆礼) High-power xenon lamp-pumped Er:YAP pulse laser operated in free-running and acousto-optical Q-switching modes 2023 Chin. Phys. B 32 114207

[1] Mizutani K, Mikami R, Tsukui A, Nagai S, Pavlic V, Komada W, Iwata T and Aoki A 2022 J. Prosthodont. Res. 66 346
[2] Sang Y B, Liu D, Xia X S, Zhang B C, Wang P Y, Chen Y, Xu Z, Liu WF, Guo J W and Sang F T 2021 Opt. Commun. 485 126667
[3] Zhao X Y, Sun D L, Luo J Q, Zhang H L, Fang Z Q, Quan C, Hu L Z, Han Z Y, Cheng M J and Yin S T 2019 Chin. Phys. B 28 114208
[4] Li E H, Uehara H, Yao W C, Tokita S, Potemkin F and Yasuhara R 2021 Opt. Express 29 44118
[5] Gao J Y, Sun D L, Luo J Q, Li X L, Liu W P, Zhang Q L and Yin S T 2014 Acta Phys. Sin. 63 144205 (in Chinese)
[6] Jobin F, Paradis P, Fortin V, Saucier S M, Bernier M and Vallée R 2020 Opt. Lett. 28 5028
[7] Allik T H, Chandra S, Rines D M, Schunemann P G, Hutchinson J A and Utano R T 1997 Opt. Lett. 22 597
[8] Wang Y, Li J F, You Z Y, Xia H P, Zhu Z J, Xu J L and Tu C Y 2016 Sci. Sin. Technol. 37 894 (in Chinese)
[9] Li S F and Zhang Q Y 2005 Acta Phys. Sin. 54 5462 (in Chinese)
[10] Ye X L, Xu X F, Ren H J, Zhang B, Zhang L, Wei X B and Fan G B 2022 Opt. Commun. 507 127608
[11] Fang Z Q, Sun D L, Luo J Q, Zhang H L, Zhao X Y, Quan C, Hu L Z, Chen X L, Cheng M J, Zhang Q L and Yin S T 2019 Opt. Laser Technol. 115 398
[12] Zhang H L, Sun X J, Sun D L, Luo J Q, Fang Z Q, Zhao X Y, Quan C, Hu L Z, Cheng M J, Zhang Q L and Yin S T 2019 Infrared Phys. Technol. 97 197
[13] Quan C, Sun D L, Zhang H L, Luo J Q, Hu L Z, Han Z Y, Dong K P, Chen Y W and Cheng M J 2021 Opt. Express 29 21655
[14] Kawase H and Yasuhara R 2019 Opt. Express 27 12213
[15] Quan C, Sun D L, Zhang H L, Luo J Q, Hu L Z, Han Z Y, Qiao Y, Dong K P, Chen Y W and Cheng M J 2022 J. Lumin. 25 1119122
[16] Cui Q Z, Wei M G, Xiong Z D, Hu S W, Jiang J T, Wang L, Cheng T Q, Wu X Y and Jiang H H 2019 Infrared Phys. Technol. 98 256
[17] Zhao Y H, Zong M Y, Dong J H, Zhang Z, Liu J J, Liu J and Su L B 2023 Chin. Phys. B 32 034203
[18] Schnell S, Ostroumov V G, Breguet J, Luthy W A R, Weber H P and Shcherbakov I A 1990 IEEE J. Quantum Electron. 26 1111
[19] Fang Z Q, Sun D L, Luo J Q, Zhang H L, Zhao X Y, Quan C, Hu L Z, Cheng M J, Zhang Q L and Yin S T 2017 Opt. Eng. 56 107111
[20] Luo J Q, Sun D L, Zhang H L, Guo Q, Fang Z Q, Zhao X Y, Cheng M J, Zhang Q L and Yin S T 2015 Opt. Lett. 40 4194
[21] Xu Z, Wang P Y, Liu W F, Li Y M, Gai B D, Tan Y N, Jia C Y and Guo J W 2017 XXI International Symposium on High Power Laser Systems and Applications 10254 102540
[22] Messner M, Heinrich A and Unterrainer K 2018 Appl. Opt. 57 1497
[23] Wang L, Huang H T, Shen D Y, Zhang J, Chen H, Wang Y, Liu X and Tang D Y 2014 Opt. Express 22 19495
[24] Quan C, Sun D L, Luo J Q, Zhang H L, Fang Z Q, Zhao X Y, Hu L Z, Han Z Y, Cheng M J and Yin S T 2020 Spectrosc. Spectral Anal. 40 2325 (in Chinese)
[1] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[2] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[3] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[4] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[5] Spectroscopic properties of heavily Ho3+-doped barium yttrium fluoride crystals
Ji En-Cai (吉恩才), Liu Qiang (柳强), Nie Ming-Ming (聂明明), Luo Hui (罗辉), Hu Yu-Xi (胡玉熙), Guan Zhou-Guo (官周国), Gong Ma-Li (巩马理). Chin. Phys. B, 2015, 24(9): 094216.
[6] Fiber laser pumped burst-mode operated picosecond mid-infrared laser
Wei Kai-Hua (魏凯华), Jiang Pei-Pei (姜培培), Wu Bo (吴波), Chen Tao (陈滔), Shen Yong-Hang (沈永行). Chin. Phys. B, 2015, 24(2): 024217.
[7] Generation of broadly tunable picosecond mid-infrared laser and sensitive detection of a mid-infrared signal by parametric frequency up-conversion in MgO:LiNbO3 optical parametric amplifiers
Zhang Qiu-Lin(张秋琳), Zhang Jing(张静), Qiu Kang-Sheng(邱康生), Zhang Dong-Xiang(张东香), Feng Bao-Hua(冯宝华), and Zhang Jing-Yuan(张景园) . Chin. Phys. B, 2012, 21(5): 054213.
No Suggested Reading articles found!