Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114210    DOI: 10.1088/1674-1056/acc2b0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Terahertz shaping technology based on coherent beam combining

Xiao-Ran Zheng(郑晓冉)1, Dan-Ni Ma(马丹妮)2, Guang-Tong Jiang(蒋广通)3,†, Cun-Lin Zhang(张存林)1, and Liang-Liang Zhang(张亮亮)1,‡
1 Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China;
2 Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
3 Laser Industries Research Academy-Beijing, Hubei Huazhong Changjiang Photoelectric Science and Technology Ltd, Beijing 102209, China
Abstract  The generation of terahertz (THz) waves by focusing a femtosecond pulsed laser beam at a distance is able to overcome the strong absorption properties of air and has rapidly attracted the attention of industry. However, the poor directionality of the THz wave radiation generated by this method is not conducive to THz wave applications. By controlling the morphology of the ultrafast laser-excited plasma filament and its electron density distribution through coherent beam combining technology, we achieve direct THz beam shaping and are able to obtain THz wave radiation of Gaussian or arbitrary transverse distribution. The novel experimental approach proposed in this paper opens up the research field of direct THz wave shaping using plasma. Moreover, it innovates multi-parameter convergence algorithms and, by doing so, has the potential to find beam patterns with higher energy conversion efficiency and break the energy limit of THz waves emitted by lasers at high power.
Keywords:  femtosecond pulsed laser      coherent beam combining      terahertz wave      beam shaping      plasma  
Received:  30 December 2022      Revised:  04 March 2023      Accepted manuscript online:  09 March 2023
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Kb (Coherence)  
  52.38.-r (Laser-plasma interactions)  
  87.50.U-  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074272 and 61905271), the National Defense Science and Technology Innovation Special Zone Project of China (Grant No. 20-163-02-ZT-008-009-01) and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011083).
Corresponding Authors:  Guang-Tong Jiang, Liang-Liang Zhang     E-mail:  jgtop@qq.com;zhlliang@126.com

Cite this article: 

Xiao-Ran Zheng(郑晓冉), Dan-Ni Ma(马丹妮), Guang-Tong Jiang(蒋广通), Cun-Lin Zhang(张存林), and Liang-Liang Zhang(张亮亮) Terahertz shaping technology based on coherent beam combining 2023 Chin. Phys. B 32 114210

[1] Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
[2] Kress M, Löffler T, Eden S, Thomson M and Roskos H G 2004 Opt. Lett. 29 1120
[3] Zhong H, Karpowicz N and Zhang X C 2006 Appl. Phys. Lett. 88 261103
[4] Clerici M, Peccianti M, Schmidt B, Caspani L, Shalaby M, Giguére M, Lotti A, Couairon A, Légaré F, Ozaki T, Faccio D and Morandotti R 2013 Phys. Rev Lett. 110 253901
[5] Chen Y P, Yamaguchi M, Wang M C and Zhang X C 2007 Appl. Phys. Lett. 91 251116
[6] Kumar S, Vij S, Kant N, Mehta A and Thakur V 2021 Eur. Phys. J. Plus 136 1
[7] Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S and Zhang X C 2016 Optica 3 605
[8] Zhang Z L, Zhang J Y, Chen Y P, Xia T H, Wang L Z, Han B N, He F, Sheng Z and Zhang J 2022 Ultrafast Science 2022 9870325
[9] Zhou P, Liu Z J, Wang X L, Ma Y X, Ma H T, Xu X J and Guo S F 2009 IEEE J. Sel. Top. Quant. 15 248
[10] Thomas M S 2006 Opt. Express 14 12188
[11] Vorontsov M A and Lachinova S L 2008 J. Opt. Soc. Am. A 25 1949
[12] Hou T Y, Y An, Chang Q, Ma P, Li J, Huang L J, Dong Z, Jian W, Su R, Ma Y X and P Zhou 2020 Photon. Res. 8 715
[13] Chavez C S, Padgett M J, Allison I, New G H C, Gutierrez V J C, Neil A T O, Vicar I M and Courtial J 2002 J Opt. B-Quantum S O 4 S52
[14] Genevet P, Lin J, Kats M A and Capasso F 2012 Nat. Commun. 3 1278
[15] Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D and Isham B 2010 IEEE Trans. Antennas Propag. 58 565
[16] Thide B, Then H, SjoHolm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H and Khamitova R 2007 Phys. Rev. Lett. 99 087701
[17] Li X N, Zhou L and Zhao G Z 2019 Acta Phys. Sin. 68 238101 (in Chinese)
[18] Kim K Y, Taylor A J, Glownia J H and Rodriguez G 2008 Nat. Photonics 2 605
[19] Fan T Y 2005 IEEE J. Sel. Top. Quant. 11 567
[20] Lombard L, Azarian A, Cadoret K, Bourdon P, Goular D, Canat G, Jolivet V, Jaouën Y and Vasseur O 2011 Opt. Lett. 36 523
[21] Daniault L, Hanna M, Lombard L, Zaouter Y, Mottay E, Goular D, Bourdon P, Druon F and Georges P 2011 Opt. Lett. 36 621
[22] Chanteloup J C, Bellanger S, Daniault L, Fsaifes I, Veinhard M, Bourderionnet J, Larat C, Lallier E and Brignon A 2021 Proc. SPIE, Fiber Lasers XVIII:Technology and Systems, 116651H
[23] Kim K Y, Glownia J H, Taylor A J and Rodriguez G 2007 Opt. Express 15 4577
[24] You Y S, Oh T I and Kim K Y 2012 Phys. Rev. Lett. 109 183902
[25] Gorodetsky A, Koulouklidis A D, Massaouti M and Tzortzakis S 2014 Phys. Rev. A 89 033838
[26] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[27] Perelomov A, Valentin S P and Terentev M V 1966 Sov. Phys. JETP 23 924
[28] Amico C D, Houard A, Akturk S, Liu Y, Bloas J L, Franco M, Prade B, Couairon A, Tikhonchuk V T and Mysyrowicz A 2008 New J. Phys. 10 013015
[1] Electron characteristics and dynamics in sub-millimeter pulsed atmospheric dielectric barrier discharge
Junlin Fang(方骏林), Yarong Zhang(张亚容), Chenzi Lu(卢陈梓), Lili Gu(顾莉莉), Shaofeng Xu(徐少锋), Ying Guo(郭颖), and Jianjun Shi(石建军). Chin. Phys. B, 2024, 33(1): 015201.
[2] Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet
Hui-Min Xu(许慧敏), Jing-Ge Gao(高敬格), Peng-Ying Jia(贾鹏英), Jun-Xia Ran(冉俊霞), Jun-Yu Chen(陈俊宇), and Jin-Mao Li(李金懋). Chin. Phys. B, 2024, 33(1): 015205.
[3] Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field
Yao-Ting Wang(汪耀庭), Xin-Li Sun(孙鑫礼), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜). Chin. Phys. B, 2023, 32(9): 095201.
[4] Effect of sharp vacuum-plasma boundary on the electron injection and acceleration in a few-cycle laser driven wakefield
Guo-Bo Zhang(张国博), Song Liu(刘松), De-Bin Zou(邹德滨), Ye Cui(崔野), Jian-Peng Liu(刘建鹏), Xiao-Hu Yang(杨晓虎), Yan-Yun Ma(马燕云), and Fu-Qiu Shao(邵福球). Chin. Phys. B, 2023, 32(9): 095202.
[5] Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
Borui Zheng(郑博睿), Yuanpeng Liu(刘园鹏), Minghao Yu(喻明浩), Yuanzhong Jin(金元中),Qian Zhang(张倩), and Quanlong Chen(陈全龙). Chin. Phys. B, 2023, 32(9): 095203.
[6] Efficient hydrophilicity improvement of titanium surface by plasma jet in micro-hollow cathode discharge geometry
Peng-Ying Jia(贾鹏英), Han-Xiao Jia(贾焓潇), Jun-Xia Ran(冉俊霞), Kai-Yue Wu(吴凯玥), Jia-Cun Wu(武珈存), Xue-Xia Pang(庞学霞), and Xue-Chen Li(李雪辰). Chin. Phys. B, 2023, 32(8): 085202.
[7] Simulations of hot electron transport in radiation-ablated plasma
Bin Zhao(赵斌), Tao Tao(陶弢), Rui Yan(闫锐), and Jian Zheng(郑坚). Chin. Phys. B, 2023, 32(8): 085201.
[8] Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas
Hui Li(李慧), Ji-Quan Li(李继全), Feng Wang(王丰), Qi-Bin Luan(栾其斌),Hong-En Sun(孙宏恩), and Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2023, 32(7): 075206.
[9] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[10] Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
K Gopal, A P Singh, and S Divya. Chin. Phys. B, 2023, 32(6): 065202.
[11] Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor-coil target
Xiaoxia Yuan(原晓霞), Cangtao Zhou(周沧涛), Hua Zhang(张华), Ran Li(李然), Yongli Ping(平永利), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2023, 32(5): 054101.
[12] Discrete Alfvén eigenmodes in the CFETR steady-state scenario
Yuan-Dan Lan(兰源丹), Shuang-Hui Hu(胡双辉), Si-Jie Ouyang(欧阳思杰),Wan-Po Zhu(朱万坡), and Xuan-Ge Huang(黄旋格). Chin. Phys. B, 2023, 32(5): 055201.
[13] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[14] Gas- and plasma-driven hydrogen permeation behavior of stagnant eutectic-solid GaInSn/Fe double-layer structure
Wen-Na Jing(荆文娜), Jian-Xing Liu(刘建星), Heng-Xin Guo(郭恒鑫), Si-Shu Wang(王思蜀), Hai-Lin Bi(毕海林), Bo Chen(陈波), Jian-Jun Chen(陈建军), Hong-Bin Wang(王宏彬), Jian-Jun Wei(韦建军), Zong-Biao Ye(叶宗标), and Fu-Jun Gou(芶富均). Chin. Phys. B, 2023, 32(4): 045201.
[15] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
No Suggested Reading articles found!