Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 045201    DOI: 10.1088/1674-1056/ac9365
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Gas- and plasma-driven hydrogen permeation behavior of stagnant eutectic-solid GaInSn/Fe double-layer structure

Wen-Na Jing(荆文娜)1, Jian-Xing Liu(刘建星)1, Heng-Xin Guo(郭恒鑫)1, Si-Shu Wang(王思蜀)2, Hai-Lin Bi(毕海林)3, Bo Chen(陈波)1, Jian-Jun Chen(陈建军)1, Hong-Bin Wang(王宏彬)1, Jian-Jun Wei(韦建军)2, Zong-Biao Ye(叶宗标)1,†, and Fu-Jun Gou(芶富均)1,‡
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China;
3 Hefei University of Technology, Hefei 230009, China
Abstract  Gas-driven permeation (GDP) and plasma-driven permeation (PDP) of hydrogen gas through GaInSn/Fe are systematically investigated in this work. The permeation parameters of hydrogen through GaInSn/Fe, including diffusivity, Sieverts' constant, permeability, and surface recombination coefficient are obtained. The permeation flux of hydrogen through GaInSn/Fe shows great dependence on external conditions such as temperature, hydrogen pressure, and thickness of liquid GaInSn. Furthermore, the hydrogen permeation behavior through GaInSn/Fe is well consistent with the multi-layer permeation theory. In PDP and GDP experiments, hydrogen through GaInSn/Fe satisfies the diffusion-limited regime. In addition, the permeation flux of PDP is greater than that of GDP. The increase of hydrogen plasma density hardly causes the hydrogen PDP flux to change within the test scope of this work, which is due to the dissolution saturation. These findings provide guidance for a comprehensive and systematic understanding of hydrogen isotope recycling, permeation, and retention in plasma-facing components under actual conditions.
Keywords:  liquid metals      double-layer      gas-driven permeation      plasma-driven permeation  
Received:  21 June 2022      Revised:  23 August 2022      Accepted manuscript online:  21 September 2022
PACS:  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  67.63.-r (Hydrogen and isotopes)  
  68.03.-g (Gas-liquid and vacuum-liquid interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905151 and 11875198) and the National Key Research and Development Program of China (Grant No. 2022YFE03130000).
Corresponding Authors:  Zong-Biao Ye, Fu-Jun Gou     E-mail:  zbye@scu.edu.cn;gfujun@scu.edu.cn

Cite this article: 

Wen-Na Jing(荆文娜), Jian-Xing Liu(刘建星), Heng-Xin Guo(郭恒鑫), Si-Shu Wang(王思蜀), Hai-Lin Bi(毕海林), Bo Chen(陈波), Jian-Jun Chen(陈建军), Hong-Bin Wang(王宏彬), Jian-Jun Wei(韦建军), Zong-Biao Ye(叶宗标), and Fu-Jun Gou(芶富均) Gas- and plasma-driven hydrogen permeation behavior of stagnant eutectic-solid GaInSn/Fe double-layer structure 2023 Chin. Phys. B 32 045201

[1] Martin-Rojo A B, Oyarzabal E, Morgan T W and Tabarés F L 2017 Fusion Eng. Des. 117 222
[2] Kugel H W, Allain J P, Bell M G, et al. 2012 Fusion Eng. Des. 87 1724
[3] Hu J S, Zuo G Z, Ren J, et al. 2016 Nucl. Fusion 56 046011
[4] Vertkov A, Luyblinski I, Evtikhin V, Mazzitelli G, Apicella M L, Lazarev V, Alekseyev A and Khomyakov S 2007 Fusion Eng. Des. 82 1627
[5] Frazer D, Stergar E, Cionea C and Hosemann P 2014 Energy Procedia 49 627
[6] Roth J, Tsitrone E, Loarer T, Philipps V, Brezinsek S, Loarte A, Counsell G F, Doerner R P, Schmid K, Ogorodnikova O V and Causey R A 2008 Plasma Phys. Control. Fusion 50 103001
[7] Roth J, Tsitrone E, Loarte A, et al. 2009 J. Nucl. Mater. 390 1
[8] Bi H 2017 Hydrogen isotopes transport in liquid metals under steady state plasma bombardment, Ph.D. dissertation (Department of Fusion Science School of Physical Sciences SOKENDAI (The Graduate University for Advanced Studies)) (in Japan)
[9] Zhou H, Hirooka Y, Ashikawa N, Muroga T and Sagara A 2014 J. Nucl. Mater. 455 470
[10] Stangeby P C 2018 Plasma Phys. Control. Fusion 60 044022
[11] Ohno N 2017 Plasma Phys. Control. Fusion 59 034007
[12] Zhou H, Hirooka Y, Ashikawa N, Muroga T and Sagara A 2013 Plasma and Fusion Research 8 2402065
[13] Bi H, Hirooka Y and Yagi J 2016 Plasma and Fusion Research 11 2405026
[14] Bi H and Hirooka Y 2019 IEEE Trans. Plasma Science 47 3009
[15] Bi H and Hirooka Y 2017 Fusion Eng. Des. 125 588
[16] Bi H and Hirooka Y 2017 Fusion Eng. Des. 125 222
[17] Morley N B, Burris J, Cadwallader L C and Nornberg M D 2008 Rev. Sci. Instrum. 79 056107
[18] Kiuchi K and McLellan R B 1983 Acta Metallurgica 31 961
[19] McLellan R B 1983 Scr. Metall. 17 1237
[20] Causey R A 2002 J. Nucl. Mater. 300 91
[21] Onwudinanti C, Tranca I, Morgan T and Tao S 2019 Nanomaterials (Basel) 9 129
[22] Woodruff D P and Horn K 1983 Vacuum 33 633
[23] Rosseau L R S, Medrano J A, Bhardwaj R, Goetheer E L V, Filot I A W, Gallucci F and van Sint Annaland M 2022 Membranes (Basel) 12 75
[24] Li S Y, Zhao W M, Qiao J H and Wang Y 2019 Acta Phys. Sin. 68 217103 (in Chinese)
[25] Yen P S, Deveau N D and Datta R 2018 Ind. Eng. Chem. Res. 57 1607
[26] Nazmutdinov R R and Zinkicheva T T 2004 Russ. J. Electrochem. 40 379
[27] Mazayev S N and Prokofiev Y G 1994 J. Nucl. Mater. 212 1497
[28] Zwolinski B J, Eyring H and Reese C E 1949 J. Phys. Chem. 53 1426
[29] Marshakov A I, Rybkina A A and Skuratnik Y B 2000 Russ. J. Electrochem. 36 1101
[30] Hoffman D, Singh B and Thomas III J H 1998 Handbook of vacuum science and technology (New York: Academic Press) pp. 1-812
[31] Kulsartov T V, Hayashi K, Nakamichi M, Afanasyev S E, Shestakov V P, Chikhray Y V, Kenzhin E A and Kolbaenkov A N 2006 Fusion Eng. Des. 81 701
[32] Shestakov V Pisarev A Sobolev V Kulsartov S and Tazhibaeva I 2002 J. Nucl. Mater. 307 1494
[33] Serra E, Perujo A and Benamati G 1997 J. Nucl. Mater. 245 108
[34] Choi J Y 1970 Metall Maaater. Trans. B 1 911
[35] Drexler A, Siegl W, Ecker W, Tkadletz M, Klösch G, Schnideritsch H, Mori G, Svoboda J and Fischer F D 2020 Corros. Sci. 176 109017
[36] Swansiger W A, Wolfer W G and Baskes M I 1988 J. Vac. Sci. Technol. A 6 1076
[37] Andrew P L and Haasz A A 1990 J. Vac. Sci. Technol. A 8 1807
[38] Yamakawa K, Ege M, Hirscher M, Ludescher B and Kronmüller H 2005 J. Alloys Compd. 393 5
[39] Hollmann E M and Pigarov A Y 2002 Phys. Plasmas 9 4330
[40] Méndez I, Gordillo-Vázquez F J, Herrero V J and Tanarro I 2006 J. Phys. Chem. A 110 6060
[41] Hirooka Y, Ohgaki H, Ohtsuka Y and Nishikawa M 2005 J. Nucl. Mater. 337-339 585
[1] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[2] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[3] Tuning the phase separation in La0.325Pr0.3Ca0.375MnO3 using theelectric double-layer field effect
Cui Li-Min (崔丽敏), Li Jie (李洁), Zhang Yu (张玉), Zhao Lu (赵璐), Deng Hui (邓辉), Huang Ke-Qiang (黄克强), Li He-Kang (李贺康), Zheng Dong-Ning (郑东宁). Chin. Phys. B, 2014, 23(9): 098501.
[4] Microwave absorption properties of a double-layer absorber based on nanocomposite BaFe12O19/α -Fe and nanocrystalline α -Fe microfibers
Shen Xiang-Qian (沈湘黔), Liu Hong-Bo (刘洪波), Wang Zhou (王舟), Qian Xin-Ye (钱昕晔), Jing Mao-Xiang (景茂祥), Yang Xin-Chun (杨新春). Chin. Phys. B, 2014, 23(7): 078101.
[5] Molecular dynamics simulation of self-diffusion coefficients for liquid metals
Ju Yuan-Yuan (巨圆圆), Zhang Qing-Ming (张庆明), Gong Zi-Zheng (龚自正), Ji Guang-Fu (姬广富). Chin. Phys. B, 2013, 22(8): 083101.
[6] Enhanced absorption property of ordered mesoporous carbon/Co-doped ordered mesoporous carbon double-layer absorber
Guo Shao-Li (郭绍丽), Wang Liu-Ding (王六定), Wang Yi-Ming (王一明), Wu Hong-Jing (吴宏景), Shen Zhong-Yuan (沈中元). Chin. Phys. B, 2013, 22(4): 044101.
[7] Double-layer microwave absorber of nanocrystalline strontium ferrite and iron microfibers
Wei Chun-Yu(韦春余), Shen Xiang-Qian(沈湘黔), and Song Fu-Zhan(宋福展) . Chin. Phys. B, 2012, 21(2): 028101.
[8] Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis
Jiao Bao-Chen(焦宝臣),Zhang Xiao-Dan(张晓丹), Wei Chang-Chun(魏长春), Sun Jian(孙建), Ni Jian(倪牮),and Zhao Ying(赵颖) . Chin. Phys. B, 2011, 20(3): 037306.
[9] Role of localised surface plasmon polaritons coupling in optical transmission through double-layer metal apertures
Gong Zhi-Qiang(龚志强) and Liu Jian-Qiang(刘坚强). Chin. Phys. B, 2010, 19(6): 067303.
[10] Quantum fluctuations of the antiferro-antiferromagnetic double-layer
Jiang Wei(姜伟), Zhu Cheng-Bo(朱程博), Yu Gui-Hong(于桂红), and Lo Veng-Cheong(罗永祥). Chin. Phys. B, 2009, 18(8): 3547-3550.
No Suggested Reading articles found!