ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor-coil target |
Xiaoxia Yuan(原晓霞)1, Cangtao Zhou(周沧涛)1,†, Hua Zhang(张华)1,‡, Ran Li(李然)1, Yongli Ping(平永利)2, and Jiayong Zhong(仲佳勇)2 |
1 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China; 2 Department of Astronomy, Beijing Normal University, Beijing 100875, China |
|
|
Abstract The dynamics of low-β magnetic reconnection (MR) driven by laser interaction with a capacitor-coil target are reexamined by simulations in this paper. We compare two cases MR and non-MR (also referred as AP-case and P-case standing for the anti-parallel and parallel magnetic field lines, respectively) to distinguish the different characteristics between them. We find that only in the AP-case the reconnection electric field shows up around the X line and the electron jet is directed toward the X line. The quadruple magnetic fields exist in both cases, however, they distribute in the current sheet area in the AP-case, and out of the squeezing area in the P-case, because electrons are demagnetized in the electron diffusion region in the MR process, which is absent in the P-case. The electron acceleration is dominant by the Fermi-like mechanism before the MR process, and by the reconnection electric field when the MR occurs. A power-law electron energy spectrum with an index of 1.8 is found in the AP-case. This work proves the significant potential of this experimental platform to be applied in the studies of low-β astronomy phenomena.
|
Received: 22 December 2022
Revised: 28 January 2023
Accepted manuscript online: 04 February 2023
|
PACS:
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
94.30.cp
|
(Magnetic reconnection)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875092). |
Corresponding Authors:
Cangtao Zhou, Hua Zhang
E-mail: zhoucangtao@sztu.edu.cn;zhanghua@sztu.edu.cn
|
Cite this article:
Xiaoxia Yuan(原晓霞), Cangtao Zhou(周沧涛), Hua Zhang(张华), Ran Li(李然), Yongli Ping(平永利), and Jiayong Zhong(仲佳勇) Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor-coil target 2023 Chin. Phys. B 32 054101
|
[1] Parker E N 1957 J. Geophys. Res. 62 509 [2] Parker E N 1963 Astrophys. J. Suppl. Ser. 8 177 [3] Shibata K and Magara T 2011 Living Rev. Sol. Phys. 8 1 [4] Antiochos S K, DeVore C R and Klimchuk J A 1999 Astrophys. J. 510 485 [5] Cassak P A, Mullan D J and Shay M A 2008 Astrophys. J. 676 2008 [6] Angelopoulos V, McFaddenJ P, Larson D, Carlson C W, Mende S B, Frey H, Phan T, Sibeck D G, Glassmeier K H, Auster U, Donovan E, Mann I R, Rae I J, Russell C T, Runov A, Zhou X Z and Kepko Larry 2008 Science 321 931 [7] Nagai T, Fujimoto M, Saito Y, Machida S, Terasawa T, Nakamura R, Yamamoto T, Mukai T, Nishida A and Kokubun S 1998 J. Geophys. Res. Space Phys. 103 4419 [8] Lu Q M, Fu H S, Wang R S and Lu S 2022 Chin. Phys. B 31 089401 [9] Zhang T L, Lu Q M, Baumjohann W, Russell CT, Fedorov A, Barabash S, Coates A J, Du A M, Cao J B, Nakamura R, Teh W L, Wang R S, Dou X K, Wang S, Glassmeier K H, Auster H U and Balikhin M 2022 Chin. Phys. B 31 089401 [10] Wesson J A 1990 Nucl. Fusion 30 2545 [11] Giovanelli R 1946 Nature 158 81 [12] Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Tabak M, Knauer J P, Sangster T C and Smalyuk V A 2007 Phys. Rev. Lett. 99 015001 [13] Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S M, Wei S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W R, Evans G M, Haines G A, Dangor E and Krushelnick K 2006 Phys. Rev. Lett. 97 255001 [14] Zhong J Y, Li Y T, Wang W G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G and Zhang J 2010 Nat. Phys. 6 984 [15] Fiksel G, Fox W, Bhattacharjee A, Barnak D, Chang P Y, Germaschewski K, Hu S and Nilson P 2014 Phys. Rev. Lett. 113 105003 [16] Yamada M, Ji H, Hsu S, Carter T, Kulsrud R, Ono Y and Perkins F 1997 Phys. Rev. Lett. 78 1997 [17] Egedal J, Fox W, Katz N, Porkolab M, Reim K and Zhang E 2007 Phys. Rev. Lett. 98 015003 [18] Sang L, Lu Q, Xie J, Fan F, Zhang Q, Ding W, Zheng J and Sun X 2022 Phys. Plasmas 29 102108 [19] Ji H, Yamada M, Hsu S and Kulsrud R 1998 Phys. Rev. Lett. 80 3256 [20] Ren Y, Yamada M, Gerhardt S, Ji H, Kulsrud R and Kuritsyn A 2005 Phys. Rev. Lett. 95 055003 [21] Ren Y, Yamada M, Ji H P, Gerhardt S P and Kulsrud R 2008 Phys. Rev. Lett. 101 085003 [22] Gary G A 2001 Sol. Phys. 203 71 [23] Guo F, Li H, Daughton W and Liu Y H 2014 Phys. Rev. Lett. 113 155005 [24] Daido H, Miki F, Mima K, Fujita M, Sawai K, Fujita H, Kitagawa Y, Nakai S and Yamanaka C 1986 Phys. Rev. Lett. 56 846 [25] Santos J, Bailly-Grandvaux M, Giuffrida L, et al. 2015 New J. Phys. 17 083051 [26] Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H and Azechi H 2013 Sci. Rep. 3 1170 [27] Pei X X, Zhong J Y, Sakawa Y, Zhang Z, Zhang K, Wei H G, Li Y T, Li Y F, Zhu B J, Sano T, Hara Y, Kondo S, Fujioka S, Liang G Y, Wang F L and Zhao G 2016 Phys. Plasmas 23 032125 [28] Chien A, Gao L, Zhang S, et al. arXiv: 2201.10052 physics.plasm-ph [29] Yuan X X, Zhong J Y, Zhang Z, et al. 2018 Plasma Physics and Controlled Fusion 60 065009 [30] Huang K, Lu Q, Gao L, Ji H T, Wang X and Fan F 2018 Phys. Plasmas 25 052104 [31] Huang K, Lu Q, Chien A, Gao L, Ji H T, Wang X and Wang S 2020 Plasma Physics and Controlled Fusion 63 015010 [32] Cerutti B, Werner G R, Uzdensky D A and Begelman M C 2013 Astrophys. J. 770 147 [33] Speiser T 1965 J. Geophys. Res. 70 4219 [34] Huang C, Lu Q and Wang S 2010 Phys. Plasmas 17 072306 [35] Drake J, Swisdak M, Che H and Shay M 2006 Nature 443 553 [36] Fu X R, Lu Q M and Wang S 2006 Phys. Plasmas 13 012309 [37] Huang K, Lu Q M, Huang C, Dong Q L, Wang H Y, Fan F B, Sheng Z M, Wang W and Zhang J 2017 Phys. Plasmas 24 102101 [38] Totorica S R, Abel T and Fiuza F 2016 Phys. Rev. Lett 116 095003 [39] Lu S, Lu Q M, Guo F, Sheng Z M, Wang H Y and Wang S 2016 New J. Phys. 18 013051 [40] Hoshino M, Mukai T, Terasawa T and Shinohara I 2001 J. Geophys. Res. Space Phys. 106 25979 [41] Huang C, Wu M, Lu Q, Wang R and Wang S 2015 J. Geophys. Res. Space Phys. 120 1759 [42] Egedal J, Daughton W and Le A 2012 Nat. Phys. 8 321 [43] Drake J F, Shay M A, Thongthai W and Swisdak M 2005 Phys. Rev. Lett 94 095001 [44] Nan J, Huang K, Lu Q, Lu S, Wang R, Xie J and Zheng J 2022 J. Geophys. Res. Space Phys. 127 e2021JA029996 [45] Arber T, Bennett K, Brady C, Lawrence-Douglas A, Ramsay M, Sircombe N, Gillies P, Evans R, Schmitz H, Bell A and Ridgers C 2015 Plasma Physics and Controlled Fusion 57 113001 [46] Chien A, Gao L, Ji H T, Yuan X X, Blackman E G, Chen H, Efthimion P C, Fiksel G, Froula D H, Hill K W, Huang K, LU Q M, Moody J D and Nilson P M 2019 Phys. Plasmas 26 062113 [47] Ji H T, Terry S, Yamada M, Kulsrud R, Kuritsyn A and Ren Y 2004 Phys. Rev. Lett. 92 115001 [48] Lu Q, Huang C, Xie J, Wang R, Wu M, Vaivads A and Wang S 2010 J. Geophys. 115 A11208 [49] Dong L Q, Wang S J, Lu Q M, et al. 2012 Phys. Rev. Lett. 108 215001 [50] Huang K, Huang C, Dong Q L, Lu Q M, Lu S, Sheng Z M, Wang S and Zhang J 2017 Phys. Plasmas 24 041406 [51] Law K, Bailly-Grandvaux M, Morace A, Sakata S, Matsuo K, Kojima S, Lee S, Vaisseau X, Arikawa Y, Yogo A, Kondo K, Zhang Z, Bellei C, Santos J J, Fujioka S and Azechi H 2016 Appl. Phys. Lett. 108 091104 [52] Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Philos. Trans. Royal Soc. A 378 20200015 [53] Matsuo K, Nagatomo H, Zhang Z, et al. 2017 Phys. Rev. E 95 053204 [54] Perkins L, Logan B, Zimmerman G and Werner C 2013 Phys. Plasmas 20 072708 [55] Miley G, Hora H and Kirchhoff G 2016 J. Phys. Conf. Ser. 717 012095 [56] Weng S M, Zhao Q, Sheng Z M, Yu W, Luan S X, Chen M, Yu L L, Murakami M, Mori W B and Zhang J 2017 Optica 4 1086 [57] Winjum B, Tsung F and Mori M 2018 Phys. Rev. E 98 2018 [58] Edwards M R, Shi Y, Mikhailova J M and Fisch N J 2019 Phys. Rev. Lett. 123 025001 [59] Li X C, Guo F and Liu Y H 2021 Phys. Plasmas 28 052905 [60] Drake J, Opher M, Swisdak M and Chamoun J 2010 Astrophys. J. 709 963 [61] Zenitani S and Hoshino M 2001 Astrophys. J. 562 L63 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|