Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 095202    DOI: 10.1088/1674-1056/acdc0c
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of sharp vacuum-plasma boundary on the electron injection and acceleration in a few-cycle laser driven wakefield

Guo-Bo Zhang(张国博)1,†, Song Liu(刘松)1, De-Bin Zou(邹德滨)2, Ye Cui(崔野)1, Jian-Peng Liu(刘建鹏)1, Xiao-Hu Yang(杨晓虎)1,3,‡, Yan-Yun Ma(马燕云)3,4, and Fu-Qiu Shao(邵福球)2
1 Department of Nuclear Science and Technology, National University of Defense Technology (NUDT), Changsha 410073, China;
2 Department of Physics, National University of Defense Technology, Changsha 410073, China;
3 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China;
4 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Abstract  The electron injection and acceleration driven by a few-cycle laser with a sharp vacuum-plasma boundary have been investigated through three-dimensional (3D) particle-in-cell simulations. It is found that an isotropic boundary impact injection (BII) first occurs at the vacuum-plasma boundary, and then carrier-envelope-phase (CEP) shift causes the transverse oscillation of the plasma bubble, resulting in a periodic electron self-injection (SI) in the laser polarization direction. It shows that the electron charge of the BII only accounts for a small part of the total charge, and the CEP can effectively tune the quality of the injected electron beam. The dependences of laser intensity and electron density on the total charge and the ratio of BII charge to the total charge are studied. The results are beneficial to electron acceleration and its applications, such as betatron radiation source.
Keywords:  laser wakefield acceleration      few-cycle laser      sharp vacuum-plasma boundary  
Received:  24 May 2023      Revised:  01 June 2023      Accepted manuscript online:  07 June 2023
PACS:  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.65.Rr (Particle-in-cell method)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005297, 12175309, 12175310, 11975308, and 12275356), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25050200), the Research Project of NUDT (Grant No. ZK21-12), and the Key Laboratory Foundation of Laser Plasma of Ministry of Education. De-Bin Zou also acknowledges the financial support from the NUDT Young Innovator Awards (Grant No. 20190102) and Outstanding Young Talents.
Corresponding Authors:  Guo-Bo Zhang, Xiao-Hu Yang     E-mail:  zgb830@163.com;xiaohu.yang@aliyun.com

Cite this article: 

Guo-Bo Zhang(张国博), Song Liu(刘松), De-Bin Zou(邹德滨), Ye Cui(崔野), Jian-Peng Liu(刘建鹏), Xiao-Hu Yang(杨晓虎), Yan-Yun Ma(马燕云), and Fu-Qiu Shao(邵福球) Effect of sharp vacuum-plasma boundary on the electron injection and acceleration in a few-cycle laser driven wakefield 2023 Chin. Phys. B 32 095202

[1] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[2] Pukhov A and Meyer-ter-Vehn J 2002 Appl. Phys. B 74 355
[3] Lu W, Huang C, Zhou M, Tzoufras M, Tsung F S, Mori W B and Katsouleas T 2006 Phys. Plasmas 13 056709
[4] Zhang G B, Chen M, Schroeder C B, Luo J, Zeng M, Li F Y, Yu L L, Weng S M, Sheng Z M, Ma Y Y, Yu T P and Esarey E 2016 Phys. Plasmas 23 033114
[5] Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q and Sheng Z M 2016 Chin. Phys. Lett. 33 095202
[6] Geng P F, Chen M, An X Y, Liu W Y, Zhu X Z, Li J L, Li B Y and Sheng Z M 2023 Chin. Phys. B 32 044101
[7] Gordienko S and Pukhov A 2005 Phys. Plasmas 12 043109
[8] Pukhov A and Gordienko S 2006 Phil. Trans. R. Soc. A 364 623
[9] Li A, Yu J Q, Chen Y Q and Yan X Q 2020 Acta Phys. Sin. 69 019501 (in Chinese)
[10] Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D and Hulin D 2004 Phys. Rev. Lett. 93 135005
[11] Chen M, Luo J, Li F Y, Liu F, Sheng Z M and Zhang J 2016 Light Sci. Appl. 5 e16015
[12] Feng J, Li Y F, Wang J G, Li D Z, Li F, Yan W C, Wang W M and Chen L M 2019 Sci. Rep. 9 2531
[13] Zhang G, Chen M, Yang X, Liu F, Weng S, Ma Y, Zou D, Yu T, Shao F and Sheng Z 2020 Opt. Express 28 29927
[14] Wang W T, Feng K, Ke L, Yu C H, Xu Y, Qi R, Chen Y, Qin Z Y, Zhang Z J, Fang M, Liu J Q, Jiang K N, Wang H, Wang C, Yang X J, Wu F X, Leng Y X, Liu J S, Li R X and Xu Z Z 2021 Nature 595 516
[15] Xu X L, Li F, Tsung F S, Miller K, Yakimenko V, Hogan M J, Joshi C and Mori W B 2022 Nat. Commun. 13 3364
[16] Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, Raadt T C H, Steinke S, Bin J H, Bulanov S S, Tilborg J, Geddes C G R, Schroeder C B, TóTh C, Esarey E, Swanson K, FanChiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P and Leemans W P 2019 Phys. Rev. Lett. 122 84801
[17] Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X and Xu Z Z 2021 Phys. Rev. Lett. 126 214801
[18] Guénot D, Gustas D, Vernier A, Beaurepaire B, Böhle F, Bocoum M, Lozano M, Jullien A, LopezMartens R, Lifschitz A and Faure J 2017 Nat. Photon. 11 293
[19] Ouillé M, Vernier A, Böhle F, Bocoum M, Jullien A, Lozano M, Rousseau J P, Cheng Z, Gustas D, Blumenstein A, Simon P, Haessler S, Faure J, Nagy T and Martens R L 2020 Light Sci. Appl. 9 47
[20] Zhu X L, Liu W Y, Chen M, Weng S M, He F, Assmann R, Sheng Z M and Zhang J 2021 Phys. Rev. Appl. 15 44039
[21] Zhang G B, Chen M, Zou D B, Zhu X Z, Li B Y, Yang X H, Liu F, Yu T P, Ma Y Y and Sheng Z M 2022 Phys. Rev. Appl. 17 24051
[22] Papp D, Lécz Z, Kamperidis C and Hafz N A M 2021 Plasma Phys. Control Fusion 63 065019
[23] Xu S, Zhang J, Tang N, Wang S C, Lu W and Li Z Y 2020 AIP. Adv. 10 095310
[24] Faure J, Gustas D, Guénot D, Vernier A, Böhle F, Ouillé M, Haessler S, Lopez-Martens R and Lifschitz A 2019 Plasma Phys. Control. Fusion 61 014012
[25] Kim J, Wang T, Khudik V and Shvets G 2021 Phys. Rev. Lett. 127 164801
[26] Huijts J, Andriyash I A, Rovige L, Vernier A and Faure J 2021 Phys. Plasmas 28 043101
[27] Lai P W, Liu K N, Tran D K, Chou S W, Chu H H, Chen S H, Wang J and Lin M W 2023 Phys. Plasmas 30 010703
[28] Kalmykov S, Yi S A, Khudik V and Shvets G 2009 Phys. Rev. Lett. 103 135004
[29] Eremin V, Malkov Y, Korolikhin V, Kiselev A, Skobelev S, Stepanov A and Andreev N 2012 Phys. Plasmas 19 093121
[30] Rovige L, Huijts J, Andriyash I, Vernier A, Tomkus V, Girdauskas V, Raciukaitis G, Dudutis J, Stankevic V, Gecys P, Ouille M, Cheng Z, Lopez-Martens R and Faure J 2020 Phys. Rev. Accel. Beams 23 093401
[31] Chen M, Sheng Z M, Ma Y Y and Zhang J 2006 J. Appl. Phys. 99 56109
[32] Zeng M, Chen M, Yu L L, Mori W B, Sheng Z M, Hidding B, Jaroszynski D A and Zhang J 2015 Phys. Rev. Lett. 114 084801
[33] Ma Y Y, Kawata S, Yu T P, Gu Y Q, Sheng Z M, Yu M Y, Zhuo H B, Liu H J, Yin Y, Takahashi K, Xie X Y, Liu J X, Tian C L and Shao F Q 2012 Phys. Rev. E 85 046403
[34] Shen B F, Li Y L, Nemeth K, Shang H R, Chae Y, Soliday R, Crowell R, Frank E, Gropp W and Cary J 2007 Phys. Plasmas 14 053115
[35] Wu H C, Xie B S and Yu M Y 2010 Chin. Phys. Lett. 27 105201
[36] Zhu X Z, Liu W Y and Chen M 2020 Acta Phys. Sin. 69 035201 (in Chinese)
[37] Xu H, Yu W, Yu M Y, Wong A Y, Sheng Z M, Murakami M and Zhang J 2012 Appl. Phys. Lett. 100 144101
[38] Yang X H, Dieckmann M E, Sarri G and Borghesi M 2012 Phys. Plasmas 19 113110
[39] Yu L L, Esarey E, Schroeder C B, Vay J L, Benedetti C, Geddes C G R, Chen M and Leemans W P 2014 Phys. Rev. Lett. 112 125001
[40] Kim G H, Kim C, Hafz N, Kim J U, Lee H J and Suk H 2003 30$th International Conference on Plasma Science, Jeju, South Korea, June 2-5, 2003 p. 364
[41] Fourmaux S, Ta Phuoc K, Lassonde P, Corde S, Lebrun G, Malka V, Rousse A and Kieffer 2012 Appl. Phys. Lett. 101 111106
[1] High harmonic generation in crystal SiO2 by sub-10-fs laser pulses
Shuai Wang(王帅), Jiawei Guo(郭嘉为), Xinkui He(贺新奎), Yueying Liang(梁玥瑛), Baichuan Xie(谢百川), Shiyang Zhong(钟诗阳), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(6): 063301.
[2] Plasma density transition-based electron injection in laser wake field acceleration driven by a flying focus laser
Pan-Fei Geng(耿盼飞), Min Chen(陈民), Xiang-Yan An(安相炎), Wei-Yuan Liu(刘维媛), Xin-Zhe Zhu(祝昕哲), Jian-Long Li(李建龙), Bo-Yuan Li(李博原), and Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2023, 32(4): 044101.
[3] Optimization of the beam quality in ionization injection by a tailoring gas profile
Ye Cui(崔野), Guo-Bo Zhang(张国博), Yan-Yun Ma(马燕云), Xiao-Hu Yang(杨晓虎), Jia-Yin Mu(牟佳胤), Hai-Bo Yao(姚海波), Ming Zi(资明), Jie Zhou(周洁), Jing-Qi Yang(杨静琦), Li-Xiang Hu(胡理想), and Li-Chao Tian(田立朝). Chin. Phys. B, 2021, 30(10): 105201.
[4] Developments in laser wakefield accelerators: From single-stage to two-stage
Li Wen-Tao (李文涛), Wang Wen-Tao (王文涛), Liu Jian-Sheng (刘建胜), Wang Cheng (王成), Zhang Zhi-Jun (张志钧), Qi Rong (齐荣), Yu Chang-Hai (余昌海), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2015, 24(1): 015205.
[5] Intensity-dependent asymmetric photoionization in few-cycle laser pulses
Zhang Xiao-Ming(张晓明), Zhang Jing-Tao(张敬涛), Gong Qi-Huang(龚旗煌), and Xu Zhi-Zhan(徐至展). Chin. Phys. B, 2009, 18(3): 1014-1018.
[6] Accurate determination of the absolute phase and temporal-pulse phase of few-cycle laser pulses
Xia Ke-Yu(夏可宇), Gong Shang-Qing(龚尚庆), Niu Yue-Ping(钮月萍), Li Ru-Xin(李儒新), and Xu Zhi-Zhan(徐至展). Chin. Phys. B, 2007, 16(2): 472-477.
No Suggested Reading articles found!