Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 015201    DOI: 10.1088/1674-1056/ad0118
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electron characteristics and dynamics in sub-millimeter pulsed atmospheric dielectric barrier discharge

Junlin Fang(方骏林)1, Yarong Zhang(张亚容)1, Chenzi Lu(卢陈梓)1, Lili Gu(顾莉莉)1, Shaofeng Xu(徐少锋)1, Ying Guo(郭颖)1,†, and Jianjun Shi(石建军)2,‡
1 College of Science, Donghua University, Shanghai 201620, China;
2 Yiwu Research Institute of Fudan University, Yiwu 322099, China
Abstract  The discharge characteristics and mechanism of sub-millimeter pulsed dielectric barrier discharge in atmospheric-pressure helium are investigated experimentally and theoretically, demonstrating that when the discharge gap distance is reduced from 1.00 mm to 0.20 mm, the discharge ignition time is reduced to approximately 40 ns and discharge intensity is enhanced in terms of the discharge optical emission intensity and density of the plasma species, (energetic electrons with energy above 8.40 eV). The simulated results show that as the discharge gap distance is further reduced to 0.10 mm, the number of energetic electrons decreases, which is attributable to the contraction of plasma bulk regime and reduction of electron density in the discharge bulk. Conversely, the proportion of energetic electrons to the total electrons in the discharge monotonically increases as the discharge gap distance is reduced from 1.00 mm to 0.10 mm. It is proposed that a gap distance of 0.12 mm is optimal to achieve a high concentration and proportion of energetic electrons in sub-millimeter pulsed atmosphere dielectric barrier discharge.
Keywords:  sub-millimeter pulsed discharge      plasma simulation      electron dynamics and sheath  
Received:  02 August 2023      Revised:  18 September 2023      Accepted manuscript online:  07 October 2023
PACS:  52.20.-j (Elementary processes in plasmas)  
  52.25.-b (Plasma properties)  
  52.40.Kh (Plasma sheaths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175036 and 11875104).
Corresponding Authors:  Ying Guo, Jianjun Shi     E-mail:  guoying@dhu.edu.cn;jianjunshi@gmail.com

Cite this article: 

Junlin Fang(方骏林), Yarong Zhang(张亚容), Chenzi Lu(卢陈梓), Lili Gu(顾莉莉), Shaofeng Xu(徐少锋), Ying Guo(郭颖), and Jianjun Shi(石建军) Electron characteristics and dynamics in sub-millimeter pulsed atmospheric dielectric barrier discharge 2024 Chin. Phys. B 33 015201

[1] Borcia G, Anderson C A and Brown N M D 2003 Plasma Sources Sci. Technol. 12 3354
[2] Barnes B K, Ouro-Koura H, Derickson J, et al. 2021 Am. J. Phys. 89 372
[3] Teramoto Y, Fukumoto Y, Ono R and Oda T 2011 IEEE Trans. Plasma Sci. 39 2218
[4] Borcia G, Anderson C A and Brown N M D 2005 Plasma Sources Sci. Technol. 14 259
[5] Park G Y, Park S J, Choi M Y, Koo I G, et al. 2012 Plasma Sources Sci. Technol. 21 043001
[6] Bogaerts A, Aerts R, Snoeckx R, et al. 2012 J. Phys.:Conf. Ser. 399 012011
[7] Misra N, Bhatt S, Khonsari F A and Kumar V 2021 Plasma Process. Polym. 18 e2000215
[8] Xu S, Jirasek V and Lukes P 2023 Chemistryselect 8 e202203937
[9] Xu S, Jirasek V and Lukes P 2020 J. Phys. D:Appl. Phys. 53 275204
[10] Zhang Y R, Han Q H, Fang J L, et al. 2023 Chin. Phys. B 32 025201
[11] Tao Shao, Cheng Zhang, Ruixue Wang, et al. 2016 High Voltage Engineering 42 685
[12] Martens T, Bogaerts A and van Dijk J 2010 Appl. Phys. Lett. 96 131503
[13] Walsh J L and Kong M G 2006 Appl. Phys. Lett. 89 231503
[14] Tarasenko V F, Lomaev M I and Sorokin D A 2010 IEEE Electron Dev. Lett.
[15] Williamson J M, Trump D D, Bletzinger P, et al. 2006 J. Phys. D:Appl. Phys. 39 4400
[16] Wang D H, Wang S X, Nie Z W, et al. 2022 Plasma Sources Sci. Technol. 31 045012
[17] Lodygin A N, Portsel L M, Beregulin E V, et al. 2019 J. Appl. Phys. 126 173302
[18] Sugawara H 2017 Plasma Sources Sci. Technol. 26 044002
[19] Wei L, Hu Z, Zhang Y and Yang C 2010 OZONE-Sci. Eng. 32 444
[20] Zhang Y R, Han Q H, Guo Y, et al. 2021 Acta Phys. Sin. 70 095202 (in Chinese)
[21] Han Q, Guo Y, Zhang Y, Zhang J, et al. 2021 AIP Adv. 11 025021
[22] Zhang Y, Fang J, Xu S, et al. 2023 Plasma Sources Sci. Technol. 32 035003
[23] Qian Y J, Ding K, Song S T, et al. 2012 Plasma Phys. 52 289
[24] Lu X, Wu S, Chu P K, Liu D, et al. 2011 Plasma Sources Sci. Technol. 20 065009
[25] Donko Z, Derzsi A, Vass M, et al. 2018 Plasma Sources Sci. Technol. 27 104008
[26] Sakiyama Y, Graves D B and Stoffels E 2008 J. Phys. D:Appl. Phys. 41 095204
[27] Song S, Guo Y, Choe W, Zhang J, et al. 2012 Phys. Plasmas 19 123508
[1] Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas
Hui Li(李慧), Ji-Quan Li(李继全), Feng Wang(王丰), Qi-Bin Luan(栾其斌),Hong-En Sun(孙宏恩), and Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2023, 32(7): 075206.
[2] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[3] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[4] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[5] Backward Raman amplification in plasmas with chirped wideband pump and seed pulses
Wu Zhao-Hui (吴朝辉), Wei Xiao-Feng (魏晓峰), Zuo Yan-Lei (左言磊), Liu Lan-Qin (刘兰琴), Zhang Zhi-Meng (张智猛), Li Min (李敏), Zhou Yu-Liang (周煜梁), Su Jing-Qin (粟敬钦). Chin. Phys. B, 2015, 24(1): 014211.
[6] Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge
Shang Wan-Li(尚万里), Zhang Yuan-Tao(张远涛), Wang De-Zhen(王德真), Sang Chao-Feng(桑超峰), Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Liu Shen-Ye(刘慎业), and M.~G. Kong. Chin. Phys. B, 2011, 20(1): 015201.
[7] Monte Carlo simulation of electron beam air plasma characteristics
Deng Yong-Feng(邓永锋), Han Xian-Wei(韩先伟), and Tan Chang(谭畅). Chin. Phys. B, 2009, 18(9): 3870-3876.
[8] Simulation of radio-frequency atmospheric pressure glow discharge in $\gamma$ mode
Shang Wan-Li(尚万里), Wang De-Zhen(王德真), and Michael G. Kong. Chin. Phys. B, 2007, 16(2): 485-492.
[9] A numerical simulation of the backward Raman amplifying in plasma
Wang Hong-Yu (王虹宇), Huang Zu-Qia (黄祖洽). Chin. Phys. B, 2005, 14(12): 2560-2564.
[10] Influence of ion species ratio on grid-enhanced plasma source ion implantation
Wang Jiu-Li (王久丽), Zhang Gu-Ling (张谷令), Liu Yuan-Fu (刘元富), Wang You-Nian (王友年), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2004, 13(1): 65-70.
No Suggested Reading articles found!