Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114703    DOI: 10.1088/1674-1056/acea6e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simulation of gas-liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method

Kai Feng(冯凯), Gang Yang(杨刚), and Huichen Zhang(张会臣)
Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
Abstract  A lattice Boltzmann method for gas-liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension, wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas-liquid two-phase flow in a microchannel.
Keywords:  two-phase flow      lattice Boltzmann method      pressure drop      flow-focusing microchannel  
Received:  12 June 2023      Revised:  21 July 2023      Accepted manuscript online:  26 July 2023
PACS:  47.61.Jd (Multiphase flows)  
  47.11.Qr (Lattice gas)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51775077).
Corresponding Authors:  Huichen Zhang     E-mail:  hczhang@dlmu.edu.cn

Cite this article: 

Kai Feng(冯凯), Gang Yang(杨刚), and Huichen Zhang(张会臣) Simulation of gas-liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method 2023 Chin. Phys. B 32 114703

[1] Zhao C X and Middelberg A P J 2011 Chem. Eng. Sci. 66 1394
[2] Zhang S, Zhu C, Feng H, Fu T and Ma Y 2021 Chem. Eng. Sci. 229 116040
[3] Wang H, Liu L, Zhu C, Ma Y and Fu T 2022 Chem. Eng. J. 444 136679
[4] Feng K and Zhang H 2021 Chem. Eng. Res. Des. 173 158
[5] Sontti S G and Atta A 2017 Ind. Eng. Chem. Res. 56 7401
[6] Saito S, Yoshino M and Suzuki K 2023 Comput. Fluids 254 105797
[7] Zhang C, Fu T, Zhu C, Jiang S, Ma Y and Li H Z 2017 Chem. Eng. Sci. 172 278
[8] Kawahara A, Yonemoto Y and Arakaki Y 2020 Flow Turbul. Combust. 105 1325
[9] Bretherton F P 1961 J. Fluid Mech. 10 166
[10] Kreutzer M T, Kapteijn F, Moulijn J A, Kleijn C R and Heiszwolf J J 2005 AIChE J. 51 2428
[11] Mansour M H, Kawahara A and Sadatomi M 2015 Int. J. Multiph. Flow 72 263
[12] Rothman D H and Keller J M 1988 J. Stat. Phys. 52 1119
[13] Shan X and Chen H 1993 Phys. Rev. E 47 1815
[14] Liu X, Chai Z, Zhan C, Shi B and Zhang W 2022 Multiscale Model. Simul. 20 1411
[15] Liu X, Chai Z and Shi B 2023 Phys. Rev. E 107 035308
[16] Wang H, Yuan X, Liang H, Chai Z and Shi B 2019 Capillarity 2 33
[17] Zheng H W, Shu C and Chew Y T 2006 J. Comput. Phys. 218 353
[18] Ma R, Zhou X, Dong B, Li W and Gong J 2018 Int. J. Heat Fluid Flow 71 1
[19] Liang H, Xu J, Chen J, Wang H, Chai Z and Shi B 2018 Phys. Rev. E 97 033309
[20] Dong B, Zhang Y, Zhou X, Chen C and Li W 2019 Therm. Sci. Eng. Prog. 10 309
[21] Chai Z, Shi B, Guo Z and Rong F 2011 J. Non-Newton. Fluid Mech. 166 332
[22] Chai Z and Zhao T S 2012 Phys. Rev. E 86 016705
[23] Gabbanelli S, Drazer G and Koplik J 2005 Phys. Rev. E 72 046312
[24] Young T 1805 Philos. Trans. R. Soc. 95 65
[25] Liang H, Liu H, Chai Z and Shi B 2019 Phys. Rev. E 99 063306
[26] Ding H and Spelt P D M 2007 Phys. Rev. E 75 046708
[27] Feng K and Zhang H 2020 Int. J. Mod. Phys. C 32 2150036
[28] Lou Q, Guo Z and Shi B 2013 Phys. Rev. E 87 063301
[29] Fu T, Ma Y, Funfschilling D and Li H Z 2011 Microfluid Nanofluid 10 1135
[30] Heravi P and Torabi F 2016 Int. J. Multiph. Flow 87 9
[31] Yu Z, Hemminger O and Fan L 2007 Chem. Eng. Sci. 62 7172
[32] Shi Y, Tang G H and Xia H H 2014 Comput. Fluids 90 155
[1] Discussion on interface deformation and liquid breakup mechanism in vapor-liquid two-phase flow
Xiang An(安祥), Bo Dong(董波), Ya-Jin Zhang(张雅瑾), and Xun Zhou(周训). Chin. Phys. B, 2023, 32(9): 094702.
[2] Application of shifted lattice model to 3D compressible lattice Boltzmann method
Hao-Yu Huang(黄好雨), Ke Jin(金科), Kai Li(李凯), and Xiao-Jing Zheng(郑晓静). Chin. Phys. B, 2023, 32(9): 094701.
[3] Improved contact angle measurement in multiphase lattice Boltzmann
Xing-Guo Zhong(钟兴国), Yang-Sha Liu(刘阳莎), Yi-Chen Yao(姚怡辰), Bing He(何冰), and Bing-Hai Wen(闻炳海). Chin. Phys. B, 2023, 32(5): 054701.
[4] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[5] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[6] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[7] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[8] Impact mechanism of gas temperature in metal powder production via gas atomization
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Bo-Rui Du(杜博睿), Shi-Yuan Shen(申世远), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 054702.
[9] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[10] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[11] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[12] Mechanism from particle compaction to fluidization of liquid-solid two-phase flow
Yue Zhang(张悦), Jinchun Song(宋锦春), Lianxi Ma(马连喜), Liancun Zheng(郑连存), Minghe Liu(刘明贺). Chin. Phys. B, 2020, 29(1): 014702.
[13] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[14] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[15] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
No Suggested Reading articles found!