Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 094701    DOI: 10.1088/1674-1056/acc78d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Application of shifted lattice model to 3D compressible lattice Boltzmann method

Hao-Yu Huang(黄好雨)1, Ke Jin(金科)1,4, Kai Li(李凯)1,4, and Xiao-Jing Zheng(郑晓静)2,3,†
1 School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China;
2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China;
3 Shaanxi Key Laboratory of Space Extreme Detection, Xi'an 710071, China;
4 Key Laboratory of Equipment Efficiency in Extreme Environment, Ministry of Education, Xi'an 710071, China
Abstract  An additional potential energy distribution function is introduced on the basis of previous D3Q25 model, and the equilibrium distribution function of D3Q25 is obtained by spherical function. A novel three-dimensional (3D) shifted lattice model is proposed, therefore a shifted lattice model is introduced into D3Q25. Under the finite volume scheme, several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model. The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.
Keywords:  lattice Boltzmann method      shifted lattice model      compressible flow      finite volume method  
Received:  15 December 2022      Revised:  04 February 2023      Accepted manuscript online:  25 March 2023
PACS:  47.11.Df (Finite volume methods)  
  47.40.-x (Compressible flows; shock waves)  
  05.20.Dd (Kinetic theory)  
Fund: Project supported by the Youth Program of the National Natural Science Foundation of China (Grant Nos. 11972272, 12072246, and 12202331), the National Key Project, China (Grant No. GJXM92579), and the Natural Science Basic Research Program of Shaanxi Province, China (Program No. 2022JQ-028).
Corresponding Authors:  Xiao-Jing Zheng     E-mail:  xjzheng@xidian.edu.cn

Cite this article: 

Hao-Yu Huang(黄好雨), Ke Jin(金科), Kai Li(李凯), and Xiao-Jing Zheng(郑晓静) Application of shifted lattice model to 3D compressible lattice Boltzmann method 2023 Chin. Phys. B 32 094701

[1] Koelman J M V A 2002 Europhys. Lett. 15 603
[2] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (New Y ork: Oxford University Press)
[3] Chen S and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[4] Xing J T 2021 Acta Mechanica Sinica 37 1659
[5] Guo R Q, Chen X P, Wan Z H, Hu H B and Cui S 2022 Acta Mechanica Sinica 38 321358
[6] Lim C Y, Shu C, Niu X D and Chew Y T 2002 Phys. Fluids 14 2299
[7] Zhuo C and Zhong C 2013 Phys. Rev. E 88 053311
[8] Yu H, Girimaji S S and Luo L S 2005 Phys. Rev. E 71 016708
[9] Wang G, Wan D, Peng C and Wang L 2019 Chem. Eng. Sci. 201 201
[10] Zheng H W, Shu C and Chew Y T 2006 J. Comput. Phys. 218 353
[11] Huang H, Huang J J, Lu X Y and Michael C S 2013 Int. J. Mod. Phys. C 24 1350021
[12] Afrouzi H H, Ahmadian M, Hosseini M, Arasteh H, Toghraie D and Rostami S 2020 Comput. Meth. Prog. Bio. 187 105312
[13] Zhong C W, Xie J F, Zhuo C S, Xiong S W and Yin D C 2009 Chin. Phys. B 18 4083
[14] Zhuo C, Zhong C and Cao J 2012 Phys. Rev. E 85 046703
[15] He X, Chen S and Doolen G D 1998 J. Comput. Phys. 146 282
[16] Guo Z, Zheng C, Shi B and Zhao T 2007 Phys. Rev. E 75 036704
[17] Li Q, He Y L, Wang Y and Tao W Q 2007 Phys. Rev. E 76 056705
[18] Li K and Zhong C 2015 Int. J. Numer. Methods Fluids 77 334
[19] Kataoka T and Tsutahara M 2004 Phys. Rev. E 69 056702
[20] Chen Y, Ohashi H and Akiyama M 1994 Phys. Rev. E 50 2776
[21] Watari M and Tsutahara 2003 Phys. Rev. E 67 036306
[22] Li Q, He Y L, Wang Y and Tang G H 2009 Phys. Lett. A 373 2101
[23] Qiu R F, You Y C, Zhu C X, Chen R Q and Zhu J F 2017 Pramana-J. Phys. 89 1
[24] Huang J, Xu F, Valliéres M, Michel D, Feng D H, Qian Y H and Fryxell B 1997 Int. J. Mod. Phys. C 8 827
[25] Sun C 1998 Phys. Rev. E 58 7283
[26] Sun C 2000 Phys. Rev. E 61 2645
[27] Sun C and Hsu A T 2003 Phys. Rev. E 68 016303
[28] Chopard B, Pham V T and Lefevre L 2013 Comput. Fluids 88 225
[29] Hedjripour A H, Callaghan D P and Baldock T E 2016 J. Hydraul. Res. 54 371
[30] Frapolli N, Chikatamarla S S and Karlin I V 2016 Phys. Rev. Lett. 117 010604
[31] Saadat M H, Bösch F and Karlin I V 2019 Phys. Rev. E 99 013306
[32] Reider M B and Sterling J D 1995 Comput. Fluids 24 459
[33] Peng G, Xi H, Duncan C and Chou S H 1998 Phys. Rev. E 58 R4124
[34] Peng G, Xi H, Duncan C and Chou S H 1999 Phys. Rev. E 59 4675
[35] Guo Z L, Zheng C G and Shi B C 2002 Chin. Phys. 11 366
[36] Chen F, Xu A G, Zhang G C, Gan Y B, Cheng T and Li Y J 2009 Commun. Theor. Phys. 52 681
[37] Leung R C K, So R M C, Kam E W S and Li X M 2006 7th AIAA Aeroacoustics Conference 2574
[38] Van L B 1979 J. Comput. Phys. 32 101
[39] Li K and Zhong C W 2015 Chin. Phys. B 24 050501
[40] Fu X, Sheng Y W and Xiao G D 2022 Acta Mech. Sin. 38 322151 (in Chinese)
[41] Van Albada G D, Van Leer B and Roberts Jr W W 1982 Astron. Astrophys. 108 76
[42] http://amroc.sourceforge.net/examples/euler/3d/html/box3dtextunderscore_c.htm.
[43] Carter J E 1972 Nasa Langley Research center TR R-385
[1] Discussion on interface deformation and liquid breakup mechanism in vapor-liquid two-phase flow
Xiang An(安祥), Bo Dong(董波), Ya-Jin Zhang(张雅瑾), and Xun Zhou(周训). Chin. Phys. B, 2023, 32(9): 094702.
[2] Improved contact angle measurement in multiphase lattice Boltzmann
Xing-Guo Zhong(钟兴国), Yang-Sha Liu(刘阳莎), Yi-Chen Yao(姚怡辰), Bing He(何冰), and Bing-Hai Wen(闻炳海). Chin. Phys. B, 2023, 32(5): 054701.
[3] A discrete Boltzmann model with symmetric velocity discretization for compressible flow
Chuandong Lin(林传栋), Xiaopeng Sun(孙笑朋), Xianli Su(苏咸利),Huilin Lai(赖惠林), and Xiao Fang(方晓). Chin. Phys. B, 2023, 32(11): 110503.
[4] Simulation of gas-liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
Kai Feng(冯凯), Gang Yang(杨刚), and Huichen Zhang(张会臣). Chin. Phys. B, 2023, 32(11): 114703.
[5] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[6] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[7] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[8] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[9] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[10] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[11] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[12] An improved global-direction stencil based on the face-area-weighted centroid for the gradient reconstruction of unstructured finite volume methods
Ling-Fa Kong(孔令发), Yi-Dao Dong(董义道)†, Wei Liu(刘伟), and Huai-Bao Zhang(张怀宝). Chin. Phys. B, 2020, 29(10): 100203.
[13] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[14] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[15] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
No Suggested Reading articles found!