Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 076401    DOI: 10.1088/1674-1056/acca0d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Anion type-dependent confinement effect on glass transitions of solutions of LiTFSI and LiFSI

Jinbing Zhang(张晋兵)1,2, Fengping Wang(王凤平)1,†, Zexian Cao(曹则贤)2,3, and Qiang Wang(王强)2,‡
1 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We present findings on the effect of nanometer-sized silica-based pores on the glass transition of aqueous solutions of lithium bis(trifluoromethane)sulfonimide (LiTFSI) and lithium difluorosulfimide (LiFSI), respectively. Our experimental results demonstrate a clear dependence of the confinement effect on the anion type, particularly for water-rich solutions, in which the precipitation of crystalized ice under cooling process induces the formation of freeze-concentrated phase confined between pore wall and core ice. As this liquid layer becomes thinner, the freeze-concentrated phase experiences glass transition at increasingly higher temperatures in solutions of LiTFSI. However, differently, for solutions of LiFSI and LiCl, this secondary confinement has a negligible effect on the glass transition of solutions confined wherein. These different behaviors emphasize the obvious difference in the dynamic properties' response of LiTFSI and LiFSI solutions to spatial confinement and particularly to the presence of the hydrophilic pore wall.
Keywords:  anion type-dependent confinement effect      glass transition      Li salts      aqueous solutions  
Received:  03 March 2023      Revised:  04 April 2023      Accepted manuscript online:  04 April 2023
PACS:  64.70.P- (Glass transitions of specific systems)  
  61.43.Gt (Powders, porous materials)  
  68.15.+e (Liquid thin films)  
  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974385 and 91956101).
Corresponding Authors:  Fengping Wang, Qiang Wang     E-mail:  fpwang@ustb.edu.cn;qwang@iphy.ac.cn

Cite this article: 

Jinbing Zhang(张晋兵), Fengping Wang(王凤平), Zexian Cao(曹则贤), and Qiang Wang(王强) Anion type-dependent confinement effect on glass transitions of solutions of LiTFSI and LiFSI 2023 Chin. Phys. B 32 076401

[1] Suo L M, Hu Y S, Li H, Armand M and Chen L Q 2013 Nat. Commun. 4 1481
[2] Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C and Xu K 2015 Science 350 938
[3] Lim J, Park K, Lee H, Kim J, Kwak K and Cho M 2018 J. Am. Chem. Soc. 140 15661
[4] Yamada Y, Wang J, Ko S, Watanabe E and Yamada A 2019 Nat. Energy 4 269
[5] Borodin O, Self J, Persson K A, Wang C and Xu K 2020 Joule 4 69
[6] Li M, Wang C S, Chen Z W, Xu K and Lu J 2020 Chem. Rev. 120 6783
[7] Cresce A and Xu K 2021 Carbon Energy 3 721
[8] Meng Y S, Srinivasan V and Xu K 2022 Science 378 1065
[9] Wang Y, Hao X, Kang Y, Dong M, Fang Z, Hu Y, Wang H, Fan X, Yan Y, Ye Z and Peng X 2023 J. Mater. Chem. A 11 1394
[10] Chava B S, Wang Y, Sivasankar V S and Das S 2020 Cell Reports Physical Science 1 100246
[11] Cheng C, Jiang G P, Simon G P, Liu J Z and Li D 2018 Nat. Nanotech. 13 685
[12] Aydin F, Moradzadeh A, Bilodeau C L, Lau E Y, Schwegler E, Aluru N R and Pham T A 2021 J. Chem. Theory Comput. 17 1596
[13] Hofer K, Mayer E and Johari G P 1991 J. Phys. Chem. 95 7100
[14] Elamin K, Jansson H, Kittaka S and Swenson J 2013 Phys. Chem. Chem. Phys. 15 18437
[15] Elamin K, Bjorklund J, Nyhlen F, Yttergren M, Martensson L and Swenson J 2014 J. Chem. Phys. 141 034505
[16] Zhao L, Pan L, Cao Z and Wang Q 2016 Chem. Phys. Lett. 647 170
[17] Swenson J, Elamin K, Chen G, Lohstroh W and Sakai V G 2014 J. Chem. Phys. 141 214501
[18] Swenson J, Elamin K, Jansson H and Kittaka S 2013 Chem. Phys. 424 20
[19] Longinotti M P, Fuentes-Landete V, Loerting T and Corti H R 2019 J. Chem. Phys. 151 064509
[20] Angarita I, Mazzobre M F, Corti H R and Longinotti M P 2021 Phys. Chem. Chem. Phys. 23 17018
[21] Corti H R, Appignanesi G A, Barbosa M C, Bordin J R, Calero C, Camisasca G, Elola M D, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menendez C A, de Oca J M M, Longinotti M P, Rodriguez J, Rovere M, Scherlis D and Szleifer I 2021 Eur. Phys. J. E 44 136
[22] Alcoutlabi M and McKenna G B 2005 J. Phys.: Condens. Matter 17 R461
[23] Jackson C L and McKenna G B 1991 J. Non Cryst. Solids 131-133 221
[24] Priestley R D, Ellison C J, Broadbelt L J and Torkelson J M 2005 Science 309 456
[25] Wang L M, He F and Richert R 2004 Phys. Rev. Lett. 92 095701
[26] Royall C P and Williams S R 2015 Phys. Rep. 560 1
[27] Zhao L S, Cao Z X and Wang Q 2015 Sci. Rep. 5 15714
[28] Zhao L S, Pan L Q, Cao Z X and Wang Q 2016 J. Phys. Chem. B 120 13112
[29] Zhang J, Wang F, Cao Z and Wang Q 2021 J. Phys. Chem. B 125 13041
[30] Li C C, Zhang S Y, Wang Y F, Liu H Y, Xing T, Lin Y, Rong X C, Ren H, Wu M B, Abbas Q and Li Z T 2022 J. Power Sources 544 231874
[31] Reber D, Kühnel R S and Battaglia C 2019 ACS Materials Lett. 1 44
[32] Yue J, Zhang J, Tong Y, Chen M, Liu L, Jiang L, Lv T, Hu Y S, Li H and Huang X 2021 Nat. Chem. 13 1061
[1] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[2] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[3] The universal characteristic water content of aqueous solutions
Xiao Huang(黄晓), Ze-Xian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2019, 28(6): 065101.
[4] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[5] Recrystallization of freezable bound water in aqueous solutions of medium concentrations
Lishan Zhao(赵立山), Liqing Pan(潘礼庆), Ailing Ji(纪爱玲), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2016, 25(7): 075101.
[6] Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-Kai Zhang(张博凯), Jian Li(李健), Kang Chen(陈康), Wen-De Tian(田文得), Yu-Qiang Ma(马余强). Chin. Phys. B, 2016, 25(11): 116101.
[7] Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films
Ali Badawi, N. Al-Hosiny. Chin. Phys. B, 2015, 24(10): 105101.
[8] Sub-diffusive scaling with power-law trapping times
Luo Liang (罗亮), Tang Lei-Han (汤雷翰). Chin. Phys. B, 2014, 23(7): 070514.
[9] Simulations of the flipping images and microparameters of molecular orientations in liquids according to molecule string model
Wang Li-Na (王丽娜), Zhao Xing-Yu (赵兴宇), Zhang Li-Li (张丽丽), Huang Yi-Neng (黄以能 ). Chin. Phys. B, 2012, 21(8): 086403.
[10] Liquid to glass transition of tetrahydrofuran and 2-methyltetrahydrofuran
Tan Rong-Ri (谈荣日), Shen Xin (沈鑫), Hu Lin (胡林), Zhang Feng-Shou (张丰收 ). Chin. Phys. B, 2012, 21(8): 086402.
[11] Solving the initial condition of the string relaxation equation of the string model for glass transition: part-II
Zhang Jin-Lu(张晋鲁), Wang Li-Na(王丽娜), Zhao Xing-Yu(赵兴宇), Zhang Li-Li(张丽丽), Zhou Heng-Wei(周恒为), Wei Lai(卫来), and Huang Yi-Neng(黄以能) vgluept . Chin. Phys. B, 2011, 20(2): 026401.
[12] Solving the initial condition of the string relaxation equation of the string model for glass transition: part-I
Zhang Jin-Lu(张晋鲁), Wang Li-Na(王丽娜), Zhou Heng-Wei(周恒为), Zhang Li-Li(张丽丽), Zhao Xing-Yu(赵兴宇), and Huang Yi-Neng(黄以能). Chin. Phys. B, 2010, 19(5): 056403.
No Suggested Reading articles found!