Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 103202    DOI: 10.1088/1674-1056/acf120
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms

Ting Gong(宫廷)1,2,3, Shuai Shi(师帅)1, Zhonghua Ji(姬中华)2,3,†, Guqing Guo(郭古青)1, Xiaocong Sun(孙小聪)1, Yali Tian(田亚莉)1, Xuanbing Qiu(邱选兵)1, Chuanliang Li(李传亮)1, Yanting Zhao(赵延霆)2,3, and Suotang Jia(贾锁堂)2,3
1 Shanxi Engineering Research Center of Precision Measurement and Online Detection Equipment, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We demonstrate a simple method to measure electric field intensity by using doublet electromagnetically induced transparency (EIT) spectra of cold Rb Rydberg atoms, where the frequency of the coupling laser does not need to be locked. Based on the Stark splitting of the Rb Rydberg state, 10D3/2, under electric fields and the corresponding calculated polarizabilities, the real electric field intensity is calculated using the difference in radio-frequency diffraction between two acousto-optic modulators, which acts as a frequency criterion that allows us to measure the electrical field without locking the coupling laser. The value measured by this simple method shows a good agreement with our previous work [Opt. Express 29 1558 (2021)] where the frequency of the coupling laser needs to be locked with an additional EIT spectrum based on atom vapor and a proportional-integral-differential feedback circuit. Our presented method can also be extended to the measurement of electric field based on hot Rydberg atom vapor, which has application in industry.
Keywords:  doublet electromagnetically induced transparency (EIT)      Aulter-Townes (AT) splitting      Rydberg atom      electric field measurement  
Received:  19 June 2023      Revised:  05 August 2023      Accepted manuscript online:  17 August 2023
PACS:  32.60.+i (Zeeman and Stark effects)  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  32.80.Ee (Rydberg states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034012, 12074231, 12274272, and 61827824), Science and technology innovation plan of colleges and universities in Shanxi Province (Grant No. 2021L313), Science and Technology Project of State Grid (Grant No. 5700-202127198A-0-0-00), Fundamental Research Program of Shanxi Province (Grant No. 202203021222204), and Taiyuan University of Science and Technology Scientific Research Initial Funding (Grant Nos. 20222008 and 20222132).
Corresponding Authors:  Zhonghua Ji     E-mail:  jzh@sxu.edu.cn

Cite this article: 

Ting Gong(宫廷), Shuai Shi(师帅), Zhonghua Ji(姬中华), Guqing Guo(郭古青), Xiaocong Sun(孙小聪), Yali Tian(田亚莉), Xuanbing Qiu(邱选兵), Chuanliang Li(李传亮), Yanting Zhao(赵延霆), and Suotang Jia(贾锁堂) Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms 2023 Chin. Phys. B 32 103202

[1] Julienne P S 2003 Nature 424 24
[2] Ketterle W 2002 Rev. Mod. Phys. 74 1131
[3] Lepers M, Li H, Wyart J F, Quéméner G and Dulieu O 2018 Phys. Rev. Lett. 121 063201
[4] DeMille D 2002 Phys. Rev. Lett. 88 067901
[5] Matsuda K, De Marco L, Li J R, Tobias W G, Valtolina G, Quéméner G and Ye J 2020 Science 370 1324
[6] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990
[7] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[8] Savukov I M, Seltzer S J, Romalis M V and Sauer K L 2005 Phys. Rev. Lett. 95 063004
[9] Acosta V M, Jensen K, Santori C, Budker D and Beausoleil R G 2013 Phys. Rev. Lett. 110 213605
[10] Frey M T, Ling X, Lindsay B G, Smith K A and Dunning F B 1993 Rev. Sci. Instrum. 64 3649
[11] Osterwalder A and Merkt F 1999 Phys. Rev. Lett. 82 1831
[12] Thiele T, Deiglmayr J, Stammeier M, Agner J A, Schmutz H, Merkt F and Wallraff A 2015 Phys. Rev. A 92 063425
[13] Barredo D, Kübler H, Daschner R, Löw R and Pfau T 2013 Phys. Rev. Lett. 110 123002
[14] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[15] Grabowski A, Heidemann R, Löw R, Stuhler J and Pfau T 2006 Fortschr. Phys. 54 765
[16] Gong T, Ji Z H, Du J Q, Zhao Y T, Xiao L T and Jia S T 2021 Opt. Express 29 1558
[17] Qin X T, Jiang Y, Ma W X, Ji Z H, Peng W X and Zhao Y T 2022 Chin. Phys. B 31 064216
[18] Xu Z S, Wang H M, Cai M H, You S H and Liu H P 2022 Chin. Phys. B 31 123201
[19] Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M and Jia S T 2013 Phys. Rev. A 87 033835
[20] Zimmerman M L, Littman M G, Kash M M and Kleppner D 1979 Phys. Rev. A 20 2251
[21] Angel J R P and Sandars P G H 1968 Proc. R. Soc. A. 305 125
[22] ibalić N, Pritchard J, Adams C and Weatherill K 2017 Comput. Phys. Commun. 220 319
[23] Jiao Y C, Li J KK, Wang L M, Zhang H, Zhang L J, Zhao J M and Jia S T 2016 Chin. Phys. B 25 053201
[1] Facilitation of controllable excitation in Rydberg atomic ensembles
Han Wang(王涵) and Jing Qian(钱静). Chin. Phys. B, 2023, 32(8): 083302.
[2] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[3] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[4] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[5] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[6] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[7] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[8] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[9] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[10] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[11] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[12] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[13] Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement
Linjie Zhang(张临杰), Jiasheng Liu(刘家晟), Yue Jia(贾玥), Hao Zhang(张好), Zhenfei Song(宋振飞), Suotang Jia(贾锁堂). Chin. Phys. B, 2018, 27(3): 033201.
[14] Rydberg quantum controlled-phase gate with one control and multiple target qubits
S L Su(苏石磊). Chin. Phys. B, 2018, 27(11): 110304.
[15] Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民). Chin. Phys. B, 2017, 26(11): 113202.
No Suggested Reading articles found!