|
|
Effect of aggregation on thermally activated delayed fluorescence and ultralong organic phosphorescence: QM/MM study |
Qun Zhang(张群), Xiaofei Wang(王晓菲), Zhimin Wu(吴智敏), Xiaofang Li(李小芳), Kai Zhang(张凯), Yuzhi Song(宋玉志), Jianzhong Fan(范建忠), Chuan-Kui Wang(王传奎)†, and Lili Lin(蔺丽丽)‡ |
Shandong Key Laboratory of Medical Physics and Image Processing&Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract Aggregation-induced thermally activated delayed fluorescence (TADF) phenomena have attracted extensive attention recently. In this paper, several theoretical models including monomer, dimer, and complex are used for the explanation of the luminescent properties of ($R$)-5-(9H-carbazol-9-yl)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)isoindoline-1,3-dione (($R$)-ImNCz), which was recently reported [$Chemical Engineering Journal$ 418 129167 (2021)]. The polarizable continuum model (PCM) and the combined quantum mechanics and molecular mechanics (QM/MM) method are adopted in simulation of the property of the molecule in the gas phase, solvated in acetonitrile and in aggregation states. It is found that large spin--orbit coupling (SOC) constants and a smaller energy gap between the first singlet excited state and the first triplet excited state ($\Delta E_{\rm st}$) in prism-like single crystals (SC$_{\rm p}$-form) are responsible for the TADF of ($R$)-lmNCz, while no TADF is found in block-like single crystals (SC$_{\rm b}$-form) with a larger $\Delta E_{\rm st}$. The multiple ultralong phosphorescence (UOP) peaks in the spectrum are of complex origins, and they are related not only to ImNCz but also to a minor amount of impurities (ImNBd) in the crystal prepared in the laboratory. The dimer has similar phosphorescence emission wavelengths to the ($R$)-lmNCz-SC$_{\rm p}$ monomers. The complex composed of ($R$)-lmNCz and ($R$)-lmNBd contributes to the phosphorescent emission peak at about 600 nm, and the phosphorescent emission peak at about 650 nm is generated by ($R$)-lmNBd. This indicates that the impurity could also contribute to emission in molecular crystals. The present calculations clarify the relationship between the molecular aggregation and the light-emitting properties of the TADF emitters and will therefore be helpful for the design of potentially more useful TADF emitters.
|
Received: 01 October 2022
Revised: 22 January 2023
Accepted manuscript online: 31 January 2023
|
PACS:
|
33.50.-j
|
(Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))
|
|
33.50.Dq
|
(Fluorescence and phosphorescence spectra)
|
|
33.50.Hv
|
(Radiationless transitions, quenching)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974216, 11874242, 21933002 and 11904210) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019MA056). The authors acknowledge the support of the Taishan Scholar Project of Shandong Province and the project funded by China Postdoctoral Science Foundation (Grant No. 2018M642689). |
Corresponding Authors:
Chuan-Kui Wang, Lili Lin
E-mail: ckwang@sdnu.edu.cn;linll@sdnu.edu.cn
|
Cite this article:
Qun Zhang(张群), Xiaofei Wang(王晓菲), Zhimin Wu(吴智敏), Xiaofang Li(李小芳), Kai Zhang(张凯), Yuzhi Song(宋玉志), Jianzhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Lili Lin(蔺丽丽) Effect of aggregation on thermally activated delayed fluorescence and ultralong organic phosphorescence: QM/MM study 2023 Chin. Phys. B 32 103301
|
[1] Tang C W and Vanslyke S A 1987 Appl. Phys. Lett. 51 913 [2] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B and Leo K 2009 Nature 459 234 [3] Yoshida K, Masui K, Nakanotani H and Adachi C 2016 Org. Electron. 31 191 [4] Guo D, Xu Z, Yang D, Ma D, Tang B and Vadim A 2020 Nanoscale 12 2648 [5] Pope M 1968 Mol. Cryst. 4 183 [6] Zhang H, Zhang B, Zhang Y, Xu Z, Wu H, Yin P A, Wang Z, Zhao Z, Ma D and Tang B Z 2020 Adv. Funct. Mater. 30 2002323 [7] Li F Y, Li M Z, Fan J Z, Song Y Z, Wang C K and Lin L L 2020 J. Phys. Chem. A 124 7526 [8] Wang Y, Peng Q, Ou Q, Lin S Y and Shuai Z G 2020 J. Mater. Chem. A 8 18721 [9] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151 [10] Jiang G Y, Li F Y, Fan J Z, Song Y Z, Wang C K and Lin L L 2020 J. Mater. Chem. C 8 98 [11] Ni F, Li N Q, Zhan L S and Yang C L 2020 Adv. Optical Mater. 8 1902187 [12] Zhao M L, Zhang H H, Gu C and Ma Y G 2020 J. Mater. Chem. C 8 5310 [13] Liu S S, Lu J J, Lu Q, Fan J Z, Lin L L, Wang C K and Song Y Z 2019 Front. Chem. 7 932 [14] Ma H L, Lv A Q, Fu L S, Wang S, An Z F, Shi H F and Huang W 2019 Ann. Phys. 7 531 [15] Sarma M and Wong K T 2018 ACS Appl. Mater. Inter. 10 19279 [16] Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L and Huang W 2014 Adv. Mater. 26 7931 [17] Hsieh C M, Wu T L, Jayakumar J, Wang Y C, Ko C L, Hung W Y, Lin T C, Wu H H, Lin K H, Lin C H, Hsieh S C and Cheng C H 2020 ACS Appl. Mater. Inter. 12 23199 [18] Zhong D K, Yu Y, Song D D, Yang X L, Zhang Y D, Chen X, Zhou G J and Wu Z X 2019 ACS Appl. Mater. Inter. 11 27112 [19] Olivier Y, Sancho-Garcia J C, Muccioli L, D'Avino G and Beljonne D 2018 J. Phys. Chem. Lett. 9 6149 [20] Ye J T, Wang L, Wang H Q, Xie H M and Qiu Y Q 2019 Org. Electron. 70 193 [21] Tsai C C, Huang W C, Chih H Y, Hsh Y C, Liao C W, Lin C H, Kang Y X, Chang C H, Chang Y J and Lu C W 2018 Org. Electron. 63 166 [22] dos Santos P L, Etherington M K and Monkman A P 2018 J. Mater. Chem. C 6 4842 [23] Liu J J, Hu T P, Li Z Y, Wei X F, Hu X X, Gao H L, Liu G H, Yi Y P, Yamada-Takamura Y, Lee C S, Wang P and Wang Y 2019 J. Phys. Chem. Lett. 10 1888 [24] Sarkar S K, Pegu M, Behera S K, Narra S K and Thilagar P 2019 Chem. Asian J. 14 4588 [25] Zheng K L, Ni F, Chen Z X, Zhong C and Yang C L 2020 Angew. Chem. Int. Ed. 59 9972 [26] Yang W, Yang Y Y, Cao X S, Liu Y, Chen Z X, Huang Z Y, Gong S L and Yang C L 2021 Chem. Eng. J. 415 128909 [27] Zhu J L, Liao Q, Huang H, Fu L Y, Liu M H, Gu C L and Fu H B 2022 Cell Rep. Phys. Sci. 3 1 [28] Li J A, Song Z C, Chen Y T, Xu C, Li S F, Peng Q E, Shi G, Liu C, Luo S L, Sun F Q, Zhao Z J, Chi Z G, Zhang Y and Xu B J 2021 Chem. Eng. J. 418 129167 [29] Li M Z, Li F Y, Zhang Q, Zhang K, Song Y Z, Fan J Z, Wang C K and Lin L L 2021 Chin. Phys. B 30 123302 [30] Zhang K, Zhang X, Fan J Z, Song Y Z, Fan J Z, Wang C K and Lin L L 2022 J. Phys. Chem. Lett. 13 4711 [31] Chen C J, Chi Z G, Chong K C, Batsanov A S, Yang Z, Mao Z, Yang Z Y and Liu B 2021 Nat. Mater. 20 175 [32] Fan J Z, Lin L L and Wang C K 2016 Chem. Phys. Lett. 652 16 [33] Fan D, Yi Y P, Li Z D, Liu W J, Peng Q and Shuai Z G 2015 J. Phys. Chem. A 119 5233 [34] Chung L W, Sameera W M C, Ramozzi R, Page A, Hatanaka M P, Petrova G V, Harris T, Li X, Ke Z F, Liu H B, Ding L N and Morokuma K 2015 Chem. Rev. 115 5678 [35] Ruiz-Barragan S, Morokuma K and Blancafort L 2015 J. Chem. Theory Comput. 11 1585 [36] Fan J Z, Zhang Y C, Zhou Y, Lin L and Wang C K 2018 J. Phys. Chem. C 122 2358 [37] Fan J Z, Zhang Y C, Zhang K, Liu J, Jiang G Y, Lin L L and Wang C K 2019 Org. Electron. 71 113 [38] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 [39] Zhang K, Zhang Q, Li M Z, Song Y Z, Fan J Z, Wang C K and Lin L L 2022 J. Phys. Chem. C 126 2437 [40] Zhang K, Wang X F, Zhang Q, Wu Z M, Li X F, Mu Q F, Fan J Z, Wang C K and Lin L L 2022 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 278 121328 [41] Lu T and Chen Q 2022 J. Comput. Chem. 43 539 [42] Miehlich B, Savin A, Stoll H and Preuss H 1989 Chem. Phys. Lett. 157 200 [43] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158 [44] Boese A D and Martin J M 2004 J. Chem. Phys. 121 3405 [45] Zhao Y and Truhlar D G 2007 Theor. Chem. Acc. 120 215 [46] Chai J D and Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615 [47] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, Rev. A. 03, Inc., Wallingford, C T, 2016 [48] Gao Y J, Chen W K, Zhang T T, Fang W H and Cui G 2018 J. Phys. Chem. C 122 27608 [49] Fan J Z, Zhang Y C, Zhang K, Lin L L and Wang C K 2019 J. Lumin. 209 372 [50] Dalton, a molecular electronic structure program, release v2020.1. DOI: http://daltonprogram.org [51] Niu Y L, Li W Q, Peng Q, Geng H, Yi Y P, Wang L J, Nan G J, Wang D and Shuai Z G 2018 Mol. Phys. 116 1078 [52] Lv A Q, Yu Z, Mao Y F, Zheng X Y, Shi W, Shi H F, Yao W, Ma H L and An Z F 2021 Dyes Pigments 193 109520 [53] Shuai Z G, Wang D, Peng Q and Geng H 2014 Acc. Chem. Res. 47 3301 [54] Peng Q, Shi Q H, Niu Y L, Yi Y P, Sun S R, Li W Q and Shuai Z G 2016 J. Mater. Chem. C 4 6829 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|