Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090501    DOI: 10.1088/1674-1056/abe92f
GENERAL Prev   Next  

Identification of unstable individuals in dynamic networks

Dongli Duan(段东立)1,†, Tao Chai(柴涛)1, Xixi Wu(武茜茜)1, Chengxing Wu(吴成星)1, Shubin Si(司书宾)2,3, and Genqing Bian(边根庆)1
1 School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710311, China;
2 School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
3 Key Laboratory of Industrial Engineering and Intelligent Manufacturing(Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an 710072, China
Abstract  To identify the unstable individuals of networks is of great importance for information mining and security management. Exploring a broad range of steady-state dynamical processes including biochemical dynamics, epidemic processes, birth-death processes and regulatory dynamics, we propose a new index from the microscopic perspective to measure the stability of network nodes based on the local correlation matrix. The proposed index describes the stability of each node based on the activity change of the node after its neighbor is disturbed. Simulation and comparison results show our index can identify the most unstable nodes in the network with various dynamical behaviors, which would actually create a richer way and a novel insight of exploring the problem of network controlling and optimization.
Keywords:  network      dynamic behaviors      stability      perturbation  
Received:  23 December 2020      Revised:  03 February 2021      Accepted manuscript online:  24 February 2021
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  64.60.aq (Networks)  
  89.75.-k (Complex systems)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 72071153 and 71771186), Key Laboratory of Science and Technology on Integrated Logistics Support (Grant Nos. 6142003190102), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2020JM-486), and the China Postdoctoral Science Foundation (Grant No. 2017M613336).
Corresponding Authors:  Dongli Duan     E-mail:  mineduan@163.com

Cite this article: 

Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆) Identification of unstable individuals in dynamic networks 2021 Chin. Phys. B 30 090501

[1] Jeong H, Tombor B, Albert R, Oltvai Z N and Barabasi A L 2000 Nature 407 651
[2] Crucitti P, Latora V and Marchiori M 2003 Phys. Rev. E 69 045104
[3] Weng W G, Ni S J, Shen S F and Yuan H Y 2007 Acta Phys. Sin. 56 1938 (in Chinese)
[4] Lu L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C and Zhou T 2016 Phys. Rep. 650 1
[5] Huang H, Ho D W and Lam J 2005 IEEE Trans. Circuits Systems Ⅱ 52 251
[6] Rakkiyappan R, Velmurugan G and Cao J 2014 Nonlinear Dyn. 78 2823
[7] Song Q, Zhao Z and Liu Y 2015 Neurocomputing 159 96
[8] Duan Z, Wang J, Chen G and Huang L 2008 Automatica 44 1028
[9] Liu X and Zou Y 2012 Int. J. Syst. Sci. 43 1950
[10] Liu X and Zou Y 2014 Multidimensional Systems and Signal Processing 25 531
[11] Li C H, Tsai C C and Yang S Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1042
[12] Wang Y, Cao J, Jin Z, Zhang H and Sun G Q 2013 Physica A 392 5824
[13] Zhang J and Sun J 2014 Physica A 394 24
[14] Lu Y L, Jiang G P and Song Y R 2013 Acta Phys. Sin. 62 537 (in Chinese)
[15] Danila B, Yu Y, Marsh JA and Bassler K E 2006 Phys. Rev. E 74 046106
[16] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[17] Yang Y H, Liu Y G, Zhou M, Li F X and Sun C 2015 Safety Sci. 79 149
[18] Gao J, Barzel B and Barabasi A L 2016 Nature 530 307
[19] Barzel B and Barabasi A L 2013 Nat. Phys. 9 673
[20] Maslov S, Sneppen K and Ispolatov I 2007 New J. Phys. 9 273
[21] Yan K K, Walker D and Maslov S 2008 Phys. Rev. Lett. 101 268102
[22] Novozhilov A S, Karev V and Koonin E V 2006 Briefings in Bioinformatics 7 70
[23] Crawford F W and Suchard M A 2012 J. Math. Biol. 65 553
[24] Karlebach G and Shamir R 2008 Nat. Rev. Mol. Cell Biol. 9 770
[25] Foo M, Kim J and Bates D G 2018 IEEE/ACM Trans. Comput. Biol. Bioinform 19 1
[26] Pastor-Satorras R and Vespignani A 2018 Phys. Rev. Lett. 86 3200
[27] Qu B and Wang H J 2017 Physica A 472 13
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[3] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[4] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[5] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[6] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[7] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[8] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[9] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[10] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[11] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[12] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[13] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[14] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[15] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
No Suggested Reading articles found!