|
|
High-fidelity topological quantum state transfersin a cavity-magnon system |
Xi-Xi Bao(包茜茜)1, Gang-Feng Guo(郭刚峰)1, Xu Yang(杨煦)1, and Lei Tan(谭磊)1,2,† |
1. Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China; 2. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract We propose a scheme for realizing high-fidelity topological state transfer via the topological edge states in a one-dimensional cavity-magnon system. It is found that the cavity-magnon system can be mapped analytically into the generalized Su-Schrieffer-Heeger model with tunable cavity-magnon coupling. It is shown that the edge state can be served as a quantum channel to realize the photonic and magnonic state transfers by adjusting the coupling strength between adjacent cavity modes. Further, our scheme can realize the quantum state transfer between photonic state and magnonic state by changing the cavity-magnon coupling strength. With the numerical simulation, we quantitatively show that the photonic, magnonic and magnon-to-photon state transfers can be achieved with high fidelity in the cavity-magnon system. Spectacularly, three different types of quantum state transfer schemes can be even transformed into each other in a controllable fashion. The Su-Schrieffer-Heeger model based on the cavity-magnon system provides us a tunable platform to engineer the transport of photon and magnon, which may have potential applications in topological quantum processing.
|
Received: 12 December 2022
Revised: 03 March 2023
Accepted manuscript online: 14 March 2023
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.67.-a
|
(Quantum information)
|
|
05.60.Gg
|
(Quantum transport)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.11874190, 61835013, and 12047501) and the Supercomputing Center of Lanzhou University. |
Corresponding Authors:
Lei Tan
E-mail: tanlei@lzu.edu.cn
|
Cite this article:
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), Xu Yang(杨煦), and Lei Tan(谭磊) High-fidelity topological quantum state transfersin a cavity-magnon system 2023 Chin. Phys. B 32 080301
|
[1] Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313 [2] Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209 [3] Suter D and Álvarez G A 2016 Rev. Mod. Phys. 88 041001 [4] Kay A 2009 Phys. Rev. A 79 042330 [5] Paganelli S, Lorenzo S, Apollaro T J G, Plastina F and Giorgi G L 2013 Phys. Rev. A 87 062309 [6] Lorenzo S, Apollaro T J G, Paganelli S, Palma G M and Plastina F 2015 Phys. Rev. A 91 042321 [7] Plenio M B, Hartley J and Eisert J 2004 New J. Phys. 6 36 [8] Vijay S and Fu L 2016 Phys. Rev. B 94 235446 [9] Stannigel K, Rabl P, Sorensen A S, Lukin M D and Zoller P 2011 Phys. Rev. A 84 042341 [10] Chen Q and Feng M 2010 Phys. Rev. A 82 052329 [11] Zhang Z T and Yu Y 2013 Phys. Rev. A 87 032327 [12] Li D X and Shao X Q 2018 Phys. Rev. A 98 062338 [13] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P and Rabl P 2012 Phys. Rev. Lett. 109 013603 [14] Rips S and Hartmann M J 2013 Phys. Rev. Lett. 110 120503 [15] Chen J, Nurdin H I and Yamamoto N 2020 Phys. Rev. Appl. 14 024065 [16] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 [17] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902 [18] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603 [19] Zhang J, Peng K and Braunstein S L 2003 Phys. Rev. A 68 013808 [20] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 [21] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311 [22] Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902 [23] Bose S 2003 Phys. Rev. Lett. 91 207901 [24] Yao N Y, Jiang L, Gorshkov A V, Gong Z X, Zhai A, Duan L M and Lukin M D 2011 Phys. Rev. Lett. 106 040505 [25] Brandes T and Vorrath T 2002 Phys. Rev. B 66 075341 [26] He Y, He Y M, Wei Y J, Jiang X, Chen K, Lu C Y, Pan J W, Schneider C, Kamp M and Höfling S 2017 Phys. Rev. Lett. 119 060501 [27] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [28] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [29] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 [30] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 [31] Shen S Q 2012 Topological Insulators: Dirac Equation in Condensed Matters. In: Springer Series in Solid-State Sciences vol 174 [32] Wu Q, Du L and Sacksteder V E 2013 Phys. Rev. B 88 045429 [33] Chen L, Wang Z F and Liu F 2013 Phys. Rev. B 87 235420 [34] Paananen T and Dahm T 2013 Phys. Rev. B 87 195447 [35] Malki M and Uhrig G S 2017 Phys. Rev. B 95 235118 [36] Brouwer P W, Duckheim M, Romito A and von Oppen F 2011 Phys. Rev. B 84 144526 [37] Li L, Xu Z and Chen S 2014 Phys. Rev. B 89 085111 [38] Di Liberto M, Recati A, Carusotto I and Menotti C 2016 Phys. Rev. A 94 062704 [39] Bao X X, Guo G F, Du X P, Gu H Q and Tan L 2021 J. Phys.: Condens. Matter 33 185401 [40] Guo G F, Bao X X and Tan L 2021 New J. Phys. 23 123007 [41] Longhi S, Giorgi G L and Zambrini R 2019 Adv. Quantum Technol. 2 1800090 [42] Dlaska C, Vermersch B and Zoller P 2017 Quantum Sci. Technol. 2 015001 [43] Mei F, Chen G, Tian L, Zhu S L and Jia S 2018 Phys. Rev. A 98 012331 [44] Zheng L N, Qi L, Cheng L Y, Wang H F and Zhang S 2020 Phys. Rev. A 102 012606 [45] Qi L, Wang G L, Liu S, Zhang S and Wang H F 2020 Opt. Lett. 45 2018 [46] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101 [47] Zhao C, Li X, Chao S, Peng R, Li C and Zhou L 2020 Phys. Rev. A 101 063838 [48] Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M and Nakamura Y 2016 Phys. Rev. Lett. 116 223601 [49] Gao Y P, Liu X F, Wang T J, Cao C and Wang C 2019 Phys. Rev. A 100 043831 [50] Haigh J A, Nunnenkamp A, Ramsay A J and Ferguson A J 2016 Phys. Rev. Lett. 117 133602 [51] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401 [52] Zhang X, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605 [53] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603 [54] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002 [55] Li J, Wang Y P, Wu W J, Zhu S Y and You J Q 2021 arXiv:2108.11156 [quant-ph] [56] Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M and You J Q 2018 Phys. Rev. Lett. 120 057202 [57] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 3347 [58] Tan H and Li J 2021 Phys. Rev. Res. 3 013192 [59] Xiao Y, Yan X H, Zhang Y, Grigoryan V L, Hu C M, Guo H and Xia K 2019 Phys. Rev. B 99 094407 [60] Liu Z X, Xiong H and Wu Y 2019 IEEE Acc. 7 57047 [61] Cao Y and Yan P 2019 Phys. Rev. B 99 214415 [62] Ebrahimi M S, Motazedifard A and Harouni M B 2021 Phys. Rev. A 103 062605 [63] Zhang X F, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 9914 [64] Strack P and Sachdev S 2011 Phys. Rev. Lett. 107 277202 [65] Sundaresan N M, Liu Y, Sadri D, Szöcs L J, Underwood D L, Malekakhlagh M, Türeci H E and Houck A A 2015 Phys. Rev. X 5 021035 [66] Torggler V, Krämer S and Ritsch H 2017 Phys. Rev. A 95 032310 [67] Xu Y J, Wang S S, Chen M R and Liao Q H 2019 Laser Phys. 29 065202 [68] Xu X W, Zhao Y J, Wang H, Chen A X and Liu Y X 2022 Front. Phys. 9 813801 [69] Zhang X, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286 [70] Ullah K, Naseem M T and Müstecaplioǧlu O E 2020 Phys. Rev. A 102 033721 [71] van Oosten D, van der Straten P and Stoof H T C 2001 Phys. Rev. A 63 053601 [72] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J Q 2016 Phys. Rev. B 94 224410 [73] Buks E, Brookes P, Ginossar E, Deng C, Orgiazzi J L F X, Otto M and Lupascu A 2020 Phys. Rev. A 102 043716 [74] Kelly S P, Rey A M and Marino J 2021 Phys. Rev. Lett. 126 133603 [75] Crescini N, Braggio C, Carugno G, Ortolan A and Ruoso G 2021 Phys. Rev. B 104 064426 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|