Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 085201    DOI: 10.1088/1674-1056/acc0f3
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Simulations of hot electron transport in radiation-ablated plasma

Bin Zhao(赵斌)1,2,†, Tao Tao(陶弢)2, Rui Yan(闫锐)2,3, and Jian Zheng(郑坚)2,4
1. Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China;
2. IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China;
3. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China;
4. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
Abstract  The transport of hot electrons in inertial confinement fusion (ICF) is integrated issue due to the coupling of hydrodynamic evolution and many physical processes. A hot electron transport code is developed and coupled with the radiation hydrodynamic code MULTI1D in this study. Using the code, the slowing-down process and ablation process of the hot electron beam are simulated. The ablation pressure scaling law of hot electron beam is confirmed in our simulations. The hot electron transport is simulated in the radiation-ablated plasmas relevant to indirect-drive ICF, where the spatial profile of hot electron energy deposition is presented around the shock compressed region. It is shown that the hot electron can prominently increase the total ablation pressure in the early phase of radiation-ablated plasma. So, our study suggests that a potential-driven symmetric mechanism may occur under the irradiation of asymmetric hot electron beam. The possible degradation from the hot electron transport and preheating is also discussed.
Keywords:  hot electron      ablation      indirect-drive ICF      radiation-ablated plasmas  
Received:  25 November 2022      Revised:  17 February 2023      Accepted manuscript online:  03 March 2023
PACS:  52.55.Pi (Fusion products effects (e.g., alpha-particles, etc.), fast particle effects)  
  52.57.-z (Laser inertial confinement)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA25050600) and the DCI joint team.
Corresponding Authors:  Bin Zhao     E-mail:  zhaobin@mail.ustc.edu.cn

Cite this article: 

Bin Zhao(赵斌), Tao Tao(陶弢), Rui Yan(闫锐), and Jian Zheng(郑坚) Simulations of hot electron transport in radiation-ablated plasma 2023 Chin. Phys. B 32 085201

[1] Atzeni S and Meyer-ter-vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford Science Pub.)
[2] Robinson A P L, Strozzi D J, Davies J R, Gremillet L, Honrubia J J, Johzaki T, Kingham R J, Sherlock M and Solodov A A 2014 Nucl. Fusion 54 054003
[3] Gus'kov S Y, Zverev V V and Rozanov V B Sov. J. Quantum Electron. 13 498
[4] Ribeyre X, Gus'kov S, Feugeas J L, Nicola Ph and Tikhonchuk V T 2013 Phys. Plasmas 20 062705
[5] Llor Aisa E, Ribeyre X, Gus'Kov S Y and Tikhonchuk V T 2016 Phys. Plasmas 23 082702
[6] Gus'kov S Y, Nicolai P, Ribeyre X and Tikhonchuk V T 2015 JETP 121 529
[7] Shang W L, Che X S, Sun A, et al. 2020 Chin. Phys. B 29 105201
[8] Wu S Z, Zhang H, Zhou C T, Wu J F, et al. 2015 High Power Laser and Particle Beams 27 032010
[9] Chang T Q, Zhang J, Zhang J T, et al. 1991 Laser plasma interaction and laser fusion (Changsha: Hunan Scince Science and Technology Press)
[10] Touati M, Feugeas J L, Ph N, Santos J J, Gremillet L and Tikhonchuk V T 2014 New J. Phys. 16 073014
[11] Delettrez J and Goldman E B 1976 Numerical modeling of suprathermal electron transport in laser-produced plasmas, LLE Report No. 36
[12] Zhao Y, Sheng Z, Cui Z, Ren L and Zhu J 2022 New J. Phys. 24 043025
[13] Dubroca B, Feugeas J L and Frank M 2010 Eur. Phys. J. D 60 301
[14] Ramis R, Schmalz R and Meyer-Ter-Vehn 1988 J. Computer. Phys. Commun. 49 475
[15] Versteeg H K and Malalasekera W 2006 An introduction to computational fluid dynamics: the finite volume method (New York: Pearson Education)
[16] Evans R G 1983 Laser Part. Beams 1 231
[17] Solodov A A and Betti R 2008 Phys. Plasmas 15 042707
[18] Wu S Z, Zhang H, Zhou C T, Zhu S P and He X T 2013 EPJ Web of Conferences 59 05021
[19] Robiche J and Rax J M 2004 Phys. Rev. E 70 046405
[20] Llor Aisa E, Ribeyre X, Gus'kov S, Nicolaï P and Tikhonchuk V T 2015 Phys. Plasmas 22 102704
[21] Nicolaï P, Feugeas J L, Touati M, Ribeyre X, Gus'kov S Y and Tikhonchuk V T 2014 Phys. Rev. E 89 033107
[22] More R M, Warren K H, Young D A and Zimmerman G B 1988 Phys. Fluids 31 3059
[23] Theobald W, Nora R, Seka W, Lafon M, Anderson K S, Hohenberger M, Marshall F J, Michel D T, Solodov A A, Stoeckl C, Edgell D H, Yaakobi B, Casner A, Reverdin C, Ribeyre X, Shvydky A, Vallet A, Peebles J, Beg F N, Wei M S and Betti R 2015 Phys. Plasmas 22 056310
[24] Chen Y H, Li Z, Cao H, Pan K, Li S, Xie X, Deng B, Wang Q, Cao Z, Hou L, Che X, Yang P, Li Y, He X, Xu T, Liu Y, Li Y, Liu X, Zhang H, Zhang W, Jiang B, Xie J, Zhou W, Huang X, Huo W Y, Ren G, Li K, Hang X, Li S, Zhai C, Liu J, Zou S, Ding Y and Lan K 2022 Matter Radiat. Extremes 7 065901
[25] Cai H B, Shan L Q, Yuan Z Q, Zhang W S, Wang W W, Tian C, Zhang F, Teng J, Yang S Q, Tang Q, Song Z F, Chen J B, Zhou W M, Gu Y Q, Zhang B H, Zhu S P and He X T 2020 High Energy Density Phys. 36 100756
[1] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[2] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[3] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[4] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[5] Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣). Chin. Phys. B, 2021, 30(7): 077301.
[6] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[7] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[8] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[9] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[10] Characterization of ion irradiated silicon surfaces ablated by laser-induced breakdown spectroscopy
T Iqbal, M Abrar, M B Tahir, M Seemab, A Majid, S Rafique. Chin. Phys. B, 2018, 27(8): 087401.
[11] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[12] Tungsten ion source under double-pulse laser ablation system
Ahmed Asaad I Khalil, Ashraf I Hafez, Mahmoud E Elgohary, Mohamed A Morsy. Chin. Phys. B, 2017, 26(9): 095201.
[13] Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti
Umm-i-Kalsoom, Shazia Bashir, Nisar Ali, M Shahid Rafique, Wolfgang Husinsky, Chandra S R Nathala, Sergey V Makarov, Narjis Begum. Chin. Phys. B, 2016, 25(1): 018101.
[14] The influence of ablation products on the ablation resistance of C/C-SiC composites and the growth mechanism of SiO2 nanowires
Li Xian-Hui (李县辉), Yan Qing-Zhi (燕青芝), Mi Ying-Ying (米应映), Han Yong-Jun (韩永军), Wen Xin (温馨), Ge Chang-Chun (葛昌纯). Chin. Phys. B, 2015, 24(2): 026103.
[15] High-power terahertz pulse sensor with overmoded structure
Wang Xue-Feng (王雪锋), Wang Jian-Guo (王建国), Wang Guang-Qiang (王光强), Li Shuang (李爽), Xiong Zheng-Feng (熊正锋). Chin. Phys. B, 2014, 23(5): 058701.
No Suggested Reading articles found!