Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018101    DOI: 10.1088/1674-1056/25/1/018101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti

Umm-i-Kalsoom1,2,3, Shazia Bashir2 Nisar Ali1,2,4, M Shahid Rafique5, Wolfgang Husinsky1, Chandra S R Nathala1, Sergey V Makarov6, Narjis Begum7
1. Institute for Applied Physics, Vienna University of Technology, Vienna, Austria;
2. Centre for Advanced Studies in Physics, GC University Lahore, Pakistan;
3. Department of Physics, The University of Lahore, Pakistan;
4. Department of Basic Sciences and Humanities, University of Engineering and Technology Fasalabad, Pakistan;
5. Department of Physics, University of Engineering and Technology Lahore, Pakistan;
6. P. N. Lebedev Physics Institute RAS, Moscow, Russia;
7. Department of Physics, COMSATS Institute of Information and Technology, Islamabad, Pakistan
Abstract  

Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surface structures, LIPSS). The purpose of the present investigations is to explore the effect of fsec laser fluence and ambient environments (Vacuum & O2) on the formation of LIPSS and conical structures on the Ti surface. The surface morphology was investigated by scanning electron microscope (SEM). The ablation threshold with single and multiple (N=100) shots and the existence of an incubation effect was demonstrated by SEM investigations for both the vacuum and the O2 environment. The phase analysis and chemical composition of the exposed targets were performed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS), respectively. SEM investigations reveal the formation of LIPSS (nano & micro). FFT d-spacing calculations illustrate the dependence of periodicity on the fluence and ambient environment. The periodicity of nano-scale LIPSS is higher in the case of irradiation under vacuum conditions as compared to O2. Furthermore, the O2 environment reduces the ablation threshold. XRD data reveal that for the O2 environment, new phases (oxides of Ti) are formed. EDS analysis exhibits that after irradiation under vacuum conditions, the percentage of impurity element (Al) is reduced. The irradiation in the O2 environment results in 15% atomic diffusion of oxygen.

Keywords:  LIPSS      ablation threshold      incubation coefficient      structural modification  
Received:  16 May 2015      Revised:  27 August 2015      Accepted manuscript online: 
PACS:  06.60.Ei (Sample preparation)  
  06.60.Jn (High-speed techniques)  
  07.78.+s (Electron, positron, and ion microscopes; electron diffractometers)  
  07.85.Jy (Diffractometers)  
Fund: 

Project supported by Österreichische Forschungsfödergesellschaft (FFG) (Grant No. 834325).

Corresponding Authors:  Umm-i-Kalsoom     E-mail:  ummikalsoom551@gmail.com

Cite this article: 

Umm-i-Kalsoom, Shazia Bashir, Nisar Ali, M Shahid Rafique, Wolfgang Husinsky, Chandra S R Nathala, Sergey V Makarov, Narjis Begum Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti 2016 Chin. Phys. B 25 018101

[1] Miyaji G and Miyazaki K 2013 Appl. Phys. Lett. 103 071910
[2] Hashida M, Okamuro, K, Miyasaka Y, Ikuta Y, Tokita S and Sakabe S 2010 Phys. Rev. B 82 165417
[3] Ionin A A, Kudryashov S I, Makarov S V, Seleznev L V, Sinitsyn D V, Ligachev A E, Golosov E V and Kolobov Y R 2013 Laser Phys. Lett. 10 056004
[4] Lavisse L, Jouvard J M, Gallien J P, Berger P, Grevey D and Naudy Ph 2007 Appl. Surf. Sci. 254 91
[5] Hashida M, Sakabe S, Tokita S, Namba S and Okamuro K 2009 Phys. Rev B 79 033409
[6] Koter R, Bonse J, Hartelt M, Spaltmann D, Pentzien S, Höhm S, Rosenfeld A and Krüger J 2014 App. Surf. Sci. 302 286
[7] Oliveira V, Ausset S and Vilar R 2009 Appl. Surf. Sci. 255 755
[8] Nayak B K, Gupta M C and Kolasinski K W 2008 Appl. Phys. A 90 39
[9] Sipe J E, Young J F, Preston J S and Van Driel H M 1983 Phys. Rev. B 27 1141
[10] Valette S, Bandoki P B, Benayoun S and Audouard E 2013 Appl. Surf. Sci. 270 197
[11] Ikuta Y, Hashida M, Miyasaka Y, Tokita S and Sakabe S 2013 App. Phys. Lett. 102 17410
[12] Vorobyev A Y and Guo C 2008 J. Appl. Phys. 103 034903
[13] Bonse J, Hohm S, Rosenfeld A and Kruger J 2013 Appl. Phys. A 110 54
[14] Kruger J and Bonse J 2010 J. Appl. Phys. 108 034903
[15] Huang M, Zhao F, Cheng Y, Xu N and Xu Z 2009 ACS Nano 3 406
[16] Guan Y C, Zhou W, Li Z L, Zheng H Y, Lim G C and Hong M H 2013 Appl. Phys. A 115 13
[17] Umm-i-Kalsoom, Bashir S and Ali N 2013 Surf. Coat. Technol. 235 297
[18] Sohn I B, Kim S H and Jeong S 2011 Appl. Surf. Sci. 103 105
[19] Kuraika M M, Dojcinovic I P and Puric J 2010 Vacuum 85 596
[20] Baba M, Ganeev R A, Ozaki T and Kuroda H 2010 J. Opt. Soc. Am. B 27 1077
[21] Vorobyev A Y and Guo C 2007 J. Phys. Conf. Ser. 59 41
[22] Bindhu C, Harilal S, Tillack M, Najmabadi F and Gaeris A 2003 J. Appl. Phys. 93 2380
[23] Van Popta A C, Kirkwood S E, Tsui Y Y and Fedosejevs R 2005 Appl. Phys. A 81 729
[24] Pereira A, Cros A, Delaporte P, Georgiou S, Manousaki A, Marine W and Sentis M 2004 Appl. Phys. A 79 1433
[25] Rafique M S, Bashir S, Husinsky W, Hobro A and Lendl B 2012 Appl. Surf. Sci. 258 3178
[26] Koumvakalis N, Lee C S and Bass M 1982 Appl. Phys. Lett. 41 625
[27] Mannion P T, Magee J, Coyne E, 'Connor G M and Glynn T J 2004 Appl. Surf. Sci. 233 275
[28] Baboo M, Sharma K and Saxena N S 2011 Nucl. Instr. & Meth. 269 2479
[29] Sicard E, Thomann A L, Leborgne C B, Vivien C, Hermann J, Vignolle C A, Andreazza P and Meneau C 1997 Surf. Coat. Technol. 97 44
[30] Biao Y, Wang G, Yong Y, Wang Z and Peng X 2015 Acta Phys. Sin. 6 026602 (in Chinese)
[1] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[2] Charge trapping memory device based on the Ga2O3 films as trapping and blocking layer
Bing Bai(白冰), Hong Wang(王宏), Yan Li(李岩), Yunxia Hao(郝云霞), Bo Zhang(张博), Boping Wang(王博平), Zihang Wang(王子航), Hongqi Yang(杨红旗), Qihang Gao(高启航), Chao Lü(吕超), Qingshun Zhang(张庆顺), Xiaobing Yan(闫小兵). Chin. Phys. B, 2019, 28(10): 106802.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
No Suggested Reading articles found!