Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 085202    DOI: 10.1088/1674-1056/acbde9
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Efficient hydrophilicity improvement of titanium surface by plasma jet in micro-hollow cathode discharge geometry

Peng-Ying Jia(贾鹏英)1, Han-Xiao Jia(贾焓潇)1, Jun-Xia Ran(冉俊霞)1, Kai-Yue Wu(吴凯玥)2, Jia-Cun Wu(武珈存)2, Xue-Xia Pang(庞学霞)1, and Xue-Chen Li(李雪辰)1,2,†
1. College of Physics Science & Technology, Hebei University, Baoding 071002, China;
2. Institute of Life Science & Green Development, Hebei University, Baoding 071002, China
Abstract  Surface hydrophilicity improvement of titanium (Ti) is of great significance for the applications of the important biomaterial. In this study, efficient hydrophilicity on the Ti surface is improved by an air plasma jet generated by a micro-hollow cathode discharge (MHCD) geometry. Elementary discharge aspects of the plasma jet and surface characteristics of the Ti surface are investigated by varying dissipated power (Pd). The results show that the plasma jet can operate in a pulsed mode or a continuous mode, depending on Pd. The plume length increases with Pd and air flow rate increasing. By optical emission spectroscopy, plasma parameters as a function of Pd are investigated. After plasma treatment, water contact angel (WCA) of the Ti sample decreases to a minimum value of 15° with Pd increasing. In addition, the surface topography, roughness, and content of chemical composition are investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS) with Pd increasing. The results show that Ti-O bond and O-H group on the Ti surface are beneficial to the improvement of the hydrophilicity of Ti surface.
Keywords:  plasma jet      plasma treatment      plasma parameters      discharge aspects  
Received:  02 December 2022      Revised:  15 February 2023      Accepted manuscript online:  22 February 2023
PACS:  52.80.Tn (Other gas discharges)  
  52.77.Bn (Etching and cleaning)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  52.50.Dg (Plasma sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51977057 and 11875121), the Natural Science Foundation of Hebei Province, China (Grant Nos.A2020201025 and A2022201036), the Natural Science Interdisciplinary Research Program of Hebei University, China (Grant Nos.DXK201908 and DXK202011), the Post-graduate's Innovation Fund Project of Hebei Province, China (Grant Nos.CXZZBS2019023 and CXZZBS2019029), and the Post-graduate's Innovation Fund Project of Hebei University, China (Grant Nos.HBU2021ss063, HBU2021bs011, and HBU2022bs004).
Corresponding Authors:  Xue-Chen Li     E-mail:  plasmalab@126.com,xuechenli@126.com

Cite this article: 

Peng-Ying Jia(贾鹏英), Han-Xiao Jia(贾焓潇), Jun-Xia Ran(冉俊霞), Kai-Yue Wu(吴凯玥), Jia-Cun Wu(武珈存), Xue-Xia Pang(庞学霞), and Xue-Chen Li(李雪辰) Efficient hydrophilicity improvement of titanium surface by plasma jet in micro-hollow cathode discharge geometry 2023 Chin. Phys. B 32 085202

[1] Jang K J, Kang J H, Sakthiabirami K, Lim H P, Yun K D, Yim E K, Oh G J, Yang H S, Lee K K and Park S W 2019 J. Nanosci. Nanotechnol. 19 2154
[2] Ko Y M, Myung S W, Jung S C and Kim B H 2015 J. Nanosci. Nanotechnol. 15 196
[3] Xing H Y, Li R Y, Wei Y J, Ying B D, Li D D and Qin Y G 2020 Front. Bioeng. Biotechnol. 8 367
[4] Zhou B, Wang Y R, Zheng K, Ma Y, Wang Y S, Yu S W and Wu Y C 2020 Chin. Phys. B 29 126101
[5] Akram M, Jansen K M B, Ernst L J and Bhowmik S 2011 Int. J. Adhes. Adhes. 31 598
[6] Cáceres D, Munuera C, Ocal C, Jiménez J A, Gutiérrez A and López M FF 2008 Acta Biomater. 4 1545
[7] Jang M H, Park Y B, Kwon J S, Kim Y J and Lee J H 2021 Materials 14 1942
[8] Casagrande R B, Kunst S R, Beltrami L V R, Aguzzoli C, Brandalise R N and Malfatti C F 2018 J. Coat. Technol. Res. 15 1089
[9] Oliveira W F, Arruda I R S, Silva G M M, Machado G, Coelho L C B B and Correia M T S 2017 Mater. Sci. Eng. C 81 597
[10] Hirano M, Yamane M and Ohtsu N 2020 Surf. Interface Anal. 52 835
[11] Gittens R A, Scheideler L, Rupp F, Hyzy S L, Geis-Gerstorfer J, Schwartz Z and Boyan B D 2014 Acta Biomater. 10 2907
[12] Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M and Ogawa T 2009 Biomaterials 30 1015
[13] Le Guéhennec L, Soueidan A, Layrolle P and Amouriq Y 2007 Dent. Mater. 23 844
[14] Wang L, Wang W W, Zhao H M, Liu Y S, Liu J and Bai N 2020 ACS Omega 5 3996
[15] Lee M J, Kwon J S, Jiang H B, Choi E H, Park G and Kim K M 2019 Sci. Rep. 9 1938
[16] Kwon J S, Choi S H, Choi E H, Kim K M and Chu P K 2020 Int. J. Mol. Sci. 21 6085
[17] Buxadera-Palomero J, Fricke K, Reuter S, Gil F J, Rodriguez D and Canal C 2021 Appl. Sci. 11 662
[18] Kim S H, Lee S J, Cho I S, Kim S K and Kim T W 2009 Angle Orthod. 79 899
[19] Gittens R A, Olivares-Navarrete R, Cheng A, Anderson D M, McLachlan T, Stephan I, Geis-Gerstorfer J, Sandhage K H, Fedorov A G, Rupp F, Boyan B D, Tannenbaum R and Schwartz Z 2013 Acta Biomater. 9 6268
[20] Choi S H, Jang S H, Cha J Y and Hwang C J 2016 Am. J. Orthod. 149 31
[21] Zhang R, Yu J S, Huang J, Chen G L, Liu X, Chen W, Wang X Q and Li C R 2018 Chin. Phys. B 27 055207
[22] Katahira K, Mifune N and Komotori J 2019 CIRP Annals 68 201
[23] Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D and Jia P Y 2019 Phys. Plasmas 26 023510
[24] Wu J C, Wu K Y, Chen J Y, Song C H, Jia P Y and Li X C 2021 Plasma Sci. Technol. 23 085504
[25] Lapitskaya V A, Kuznetsova T A, Rogachev A A, MeI'nikova G.B, Chizhik S A and Kotov D A 2019 J. Eng. Phys. Thermophys. 92 1349
[26] Attri P, Sarinont T, Kim M, Amano T, Koga K, Cho A E, Choi E H and Shiratani M 2015 Sci. Rep. 5 17781
[27] Choi S H, Jeong W S, Cha J Y, Lee J H, Lee J H, Lee K J, Yu H S, Choi E H, Kim K M and Hwang C J 2017 Dent. Mater. 33 1426
[28] Li X C, Wu J C, Jia B Y, Wu K Y, Kang P C, Zhang F R, Zhao N, Jia P Y, Wang L and Li S Z 2020 Appl. Phys. Lett. 117 134102
[29] Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y and Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015
[30] Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y and Kang P C 2018 Acta Phys. Sin. 67 075201 (in Chinese)
[31] Jia P Y, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y and Li X C 2021 Plasma Sources Sci. Technol. 30 095021
[32] Wu K Y, Zhao N, Wu J C, Zhang F R, Niu M Y, Ran J X, Jia P Y and Li X C 2022 Plasma Process. Polym. 19 e2200003
[33] Wu K Y, Ren C H, Jia B Y, Lin X T, Zhao N, Jia P Y and Li X C 2019 Plasma Process. Polym. 16 e1900073
[34] Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci. Technol. 21 034005
[35] Ren C H, He X R, Jia P Y, Wu K Y and Li X C 2020 Plasma Process. Polym. 27 113507
[36] Yu S, Chen Q Z, Liu J H, Wang K L, Jiang Z, Sun Z L, Zhang J and Fang J 2015 Appl. Phys. Lett. 106 244101
[37] Lee J H, Kim Y H, Choi E H, Kim K M and Kim K N 2015 Acta Odontol. Scand. 73 67
[38] Yoo E M, Uhm S H, Kwon J S, Choi H S, Choi E H, Kim K M and Kim K N 2015 J. Biomed. Nanotechnol. 11 334
[39] Jeong W S, Kwon J S, Lee J H, Uhm S H, Choi E H and Kim K M 2017 Biomed. Mater. 12 045015
[40] Yang Y, Guo J S, Zhou X, Liu Z Q, Wang C B, Wang K L, Zhang J and Wang Z M 2017 Dent. Mater. J. 37 157
[41] Schoenbach K H, EI-Habachi A, Shi W and Ciocca M 1997 Plasma Sources Sci. Technol. 6 468
[42] Stark R H and Schoenbach K H 1999 Appl. Phys. Lett. 74 3770
[43] Moshkunov S I, Romanov K I, Khomich V Y and Shershunova E A 2021 Plasma Phys. Rep. 48 449
[44] Wu J C, Wu K Y, Ren C H, Jia P Y and Li X C 2020 Plasma Sci. Technol. 22 055505
[45] Li X C, Zhang P P, Bao W T, Jia P Y and Chu J D 2016 Plasma Sources Sci. Technol. 25 025022
[46] Xian Y B, Wu S Q, Wang Z, Huang Q J, Lu X P and Kolb J F 2013 Plasma Process. Polym. 10 372
[47] Xian Y B, Lu X P, Wu S Q, Chu P K and Pan Y 2012 Appl. Phys. Lett. 100 123702
[48] Zhao N, Wu K Y, He X R, Chen J Y, Tan X, Wu J C, Ran J X, Jia P Y and Li X C 2022 J. Phys. D: Appl. Phys. 55 015203
[49] Wu Y, Li Y H, Jia M, Liang H and Song H M 2012 Chin. Phys. B 21 045202
[50] Mraihi A, Merbahi N, Yousfi M, Abahazem A and Eichwald O 2011 Plasma Sources Sci. Technol. 20 065002
[51] Stancu G D, Kaddouri F, Lacoste D A and Laux C O 2010 J. Phys. D: Appl. Phys. 43 124002
[52] Jia P Y, Chen M, Jia H X, Tan X, Ran J X, Wu K Y, Wu J C, Chen J Y, Pang X X, Li X C and Zhao N 2022 IEEE Trans. Radiat. Plasma Med. Sci. 7 203
[53] Li X C, Zhou S, Gao K, Ran J X, Wu K Y and Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717
[54] Paris P, Aints M, Valk F, Plank T, Haljaste A, Kozlov K V and Wagner H-E 2005 J. Phys. D: Appl. Phys. 38 3894
[55] Yang L J, Song C H, Zhao N, Zhou S, Wu J C and Jia P Y 2021 Acta Phys. Sin. 70 155201 (in Chinese)
[56] Li X C, Kang P C, Gao K, Zhou S, Wu K Y and Jia P Y 2020 Plasma Process. Polym. 17 e1900223
[57] Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S and Lee E S 2006 Plasma Sources Sci. Technol. 15 416
[58] Li X C, Zhao N, Fang T Z, Liu Z H, Li L C and Dong L F 2008 Plasma Sources Sci. Technol. 17 015017
[59] Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X and Li X C 2022 Chin. Phys. B 31 065205
[60] Li X C, Jia P Y, Yuan N and Chang Y Y 2012 Chin. Phys. B 21 045204
[61] Li X C, Yuan N, Jia P Y, Chang Y Y and Ji Y F 2011 Acta Phys. Sin. 60 125204 (in Chinese)
[62] Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001
[63] Wang Y Y, Yan H J, Guo H F, Xu Y F, Zhang Q Z and Song J 2021 Plasma Sources Sci. Technol. 30 075009
[64] Chen C J, Fang Z Q, Yang X F, Fan Y S, Zhou F and Wang R G 2022 Chin. Phys. B 31 025204
[65] Cheng C, Shen J, Xiao D Z, Xie H B, Lan Y, Fang S D, Meng Y D and Chu P K 2014 Chin. Phys. B 23 075204
[66] Liu Y F, Su C Q, Ren X, Fan C, Zhou W W, Wang F and Ding W D 2014 Appl. Surf. Sci. 313 53
[67] Sun J, Yao L, Gao Z Q, Peng S J, Wang C X and Qiu Y P 2010 Surf. Coat. Technol. 204 4101
[1] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[2] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[3] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[4] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[5] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[6] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[7] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[8] Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes
Cheng Wang(王城), Zelong Zhang(张泽龙), Haichao Cui(崔海超), Weiluo Xia(夏维珞), Weidong Xia(夏维东). Chin. Phys. B, 2017, 26(8): 085207.
[9] Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact
Fang Liu(刘芳), Zhixin Qin(秦志新). Chin. Phys. B, 2016, 25(11): 117304.
[10] LIF diagnostics of hydroxyl radical in a methanol containing atmospheric-pressure plasma jet
Mu-Yang Qian(钱沐杨), San-Qiu Liu(刘三秋), Xue-Kai Pei(裴学凯), Xin-Pei Lu(卢新培), Jia-Liang Zhang(张家良), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(10): 105205.
[11] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[12] Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure
Tong Xiao-Lin (佟晓林), Xia Xiao-Zhi (夏晓智), Li Qing-Xia (李青侠). Chin. Phys. B, 2015, 24(6): 067306.
[13] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[14] Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons
Chen Zhao-Quan (陈兆权), Yin Zhi-Xiang (殷志祥), Xia Guang-Qing (夏广庆), Hong Ling-Li (洪伶俐), Hu Ye-Lin (胡业林), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), A. A. Kudryavtsev. Chin. Phys. B, 2015, 24(2): 025203.
[15] High-k gate dielectric GaAs MOS device with LaON as interlayer and NH3-plasma surface pretreatment
Liu Chao-Wen (刘超文), Xu Jing-Ping (徐静平), Liu Lu (刘璐), Lu Han-Han (卢汉汉). Chin. Phys. B, 2015, 24(12): 127304.
No Suggested Reading articles found!