Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058701    DOI: 10.1088/1674-1056/23/5/058701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-power terahertz pulse sensor with overmoded structure

Wang Xue-Feng (王雪锋)a b, Wang Jian-Guo (王建国)a c, Wang Guang-Qiang (王光强)a b, Li Shuang (李爽)a b, Xiong Zheng-Feng (熊正锋)a b
a Northwest Institute of Nuclear Technology, Xi'an 710024, China;
b Science and Technology on High Power Microwave Laboratory, Xi'an 710024, China;
c School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Based on the hot electron effect in a semiconductor, an overmoded resistive sensor for 0.3-0.4 THz band is investigated. The distribution of electromagnetic field components, voltage standing wave ratio (VSWR), and the average electric field in the silicon block are obtained by using the three-dimensional finite-difference time-domain (FDTD) method. By adjusting several factors (such as the length, width, height and specific resistance of the silicon block) a novel sensor with optimal structural parameters that can be used as a power measurement device for high power terahertz pulse directly is proposed. The results show that the sensor has a relative sensitivity of about 0.24 kW-1, with a fluctuation of relative sensitivity of no more than ± 22%, and the maximum of VSWR is 2.74 for 0.3-0.4 THz band.
Keywords:  hot electron effect      high power      terahertz pulse      overmoded structure  
Received:  23 September 2013      Revised:  22 October 2013      Accepted manuscript online: 
PACS:  87.50.U-  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61231003).
Corresponding Authors:  Wang Jian-Guo     E-mail:  wanguiuc@mail.xjtu.edu.cn
About author:  87.50.U-

Cite this article: 

Wang Xue-Feng (王雪锋), Wang Jian-Guo (王建国), Wang Guang-Qiang (王光强), Li Shuang (李爽), Xiong Zheng-Feng (熊正锋) High-power terahertz pulse sensor with overmoded structure 2014 Chin. Phys. B 23 058701

[1] Siegel P H 2002 IEEE Transaction on Microwave Theory and Techniques 50 910
[2] Booske J, Dobbs R, Joye C, Kory C, Neil G, Park G, Park J and Temkin R 2011 IEEE Transaction on Terahertz Science and Technology 1 54
[3] Chen Z and Cao J C 2013 Chin. Phys. B 22 059201
[4] Li Y T, Wang W M, Li C and Sheng Z M 2012 Chin. Phys. B 21 095203
[5] Zhang H, Wang J G, Tong C J, Li X Z and Wang G Q 2009 Phys. Plasmas 16 123104
[6] Xu X, Wei Y Y, Shen F, Huang M Z, Tang T, Duan Z Y and Gong Y B 2012 Chin. Phys. B 21 068402
[7] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W and Zhang Y C 2012 Phys. Plasmas 19 083111
[8] Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F and Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese)
[9] Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S and Lu X C 2013 Phys. Plasmas 20 043105
[10] Wang G Q, Wang J G, Li S, Wang X F, Tong C J, Lu X C and Guo W J 2013 Acta Phys. Sin. 62 150701 (in Chinese)
[11] Li S, Wang J G, Tong C J, Wang G Q, Lu X C and Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese)
[12] Wang G Q, Wang J G, Tong C J, Li X Z and Wang X F 2011 Acta Phys. Sin. 60 030702 (in Chinese)
[13] Liu E K, Zhu B S and Luo J S 2011 The Physics of Semiconductors (7th edn.) (Beijing: Publishing House of Electronics Industry) pp. 116-121 (in Chinese)
[14] Dagys M, Kancleris Ž, Simniškis R, Schamiloglu E and Agee F J 2001 IEEE Antennas and Propagation Magazine 43 64
[15] Kancleris Ž, Simniškis R, Dagys M and Tamošiūnas V 2007 IET Microw. Antennas Propag. 1 757
[16] Wang X F, Wang J G, Wang G Q, Tong C J, Li S and Li Y 2013 High Power Laser and Particle Beams 25 455 (in Chinese)
[17] Wang X F, Wang J G, Wang G Q, Wang W, Zhu X Q and Li S 2013 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, July 21-25, 2013, Chengdu, China, p. 413
[18] Zhang K Q and Li D J 2002 Electromagnetic Theory for Microwaves and Optoelectronics (2nd edn.) (Beijing: Publishing House of Electronics Industry) pp. 239-241 (in Chinese)
[19] Ge D B and Yan Y B 2006 Finite-Difference Time-Domain Method for Electromagnetic Waves (2nd edn.) (Xi'an: Xidian University Press) p. 12 (in Chinese)
[20] Wang Y, Wang J G and Zhang D H 2005 High Power Laser and Particle Beams 17 1557 (in Chinese)
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[4] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[5] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
[6] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[7] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[8] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[9] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[10] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[11] High power external-cavity surface-emitting laser with front and end pump
Lidan Jiang(蒋丽丹), Renjiang Zhu(朱仁江), Maohua Jiang(蒋茂华), Dingke Zhang(张丁可), Yuting Cui(崔玉亭), Peng Zhang(张鹏), Yanrong Song(宋晏蓉). Chin. Phys. B, 2018, 27(8): 084205.
[12] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[13] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[14] Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle
Yan-Fei Li(李彦霏), Yu-Tong Li(李玉同), Da-Wei Yuan(袁大伟), Fang Li(李芳), Bao-Jun Zhu(朱保君), Zhe Zhang(张喆), Jia-Yong Zhong(仲佳勇), Bo Han(韩波), Hui-Gang Wei(魏会冈), Xiao-Xing Pei(裴晓星), Jia-Rui Zhao(赵家瑞), Chang Liu(刘畅), Xiao-Xia Yuan(原晓霞), Guo-Qian Liao(廖国前), Yong-Joo Rhee, Xin Lu(鲁欣), Neng Hua(华能), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Zhi-Heng Fang(方智恒), Xiu-Guang Huang(黄秀光), Si-Zu Fu(傅思祖), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 055202.
[15] Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb: YAG thin-disk oscillator
Yingnan Peng(彭英楠), Jinwei Zhang(张金伟), Zhaohua Wang(王兆华), Jiangfeng Zhu(朱江峰), Dehua Li(李德华), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094207.
No Suggested Reading articles found!