Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070204    DOI: 10.1088/1674-1056/ac921e
GENERAL Prev   Next  

Angle robust transmitted plasmonic colors with different surroundings utilizing localized surface plasmon resonance

Xufeng Gao(高旭峰), Qi Wang(王琦), Shijie Zhang(张世杰), Ruijin Hong(洪瑞金), and Dawei Zhang(张大伟)
Shanghai Key Laboratory of Modern Optic Systems, Engineering Research Center of Optical Instrument and System, Ministry ofEducation and Shanghai Key Laboratory of Modern Optical Systems, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Color filters in different surroundings inherently suffer from angular sensitivity, which hinders their practical applications. Here, we present an angle-insensitive plasmonic filter that can produce different color responses to different surrounding environments. The color filters are based on a two-dimensional periodically and randomly distributed silver nanodisk array on a silica substrate. The proposed plasmonic color filters not only produce bright colors by altering the diameter of the Ag nanodisk, but also achieve continuous color palettes by changing the surrounding environment. Due to the weak coupling between the metallic nanodisks, the plasmonic color filters can enable good incident angle-insensitive properties (up to 30°). The strategy presented here could exhibit robust and promising applicability in anti-counterfeiting and imaging technologies.
Keywords:  plasmonic color filter      color sensing      high angular tolerance  
Received:  03 August 2022      Revised:  27 August 2022      Accepted manuscript online:  15 September 2022
PACS:  02.70.Bf (Finite-difference methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB2804602) and Shanghai Pujiang Program (Grant No. 21PJD048).
Corresponding Authors:  Qi Wang     E-mail:  shelly3030@163.com

Cite this article: 

Xufeng Gao(高旭峰), Qi Wang(王琦), Shijie Zhang(张世杰), Ruijin Hong(洪瑞金), and Dawei Zhang(张大伟) Angle robust transmitted plasmonic colors with different surroundings utilizing localized surface plasmon resonance 2023 Chin. Phys. B 32 070204

[1] Kinoshita S and Yoshioka S 2005 ChemPhysChem 6 1442
[2] Chung K, Yu S, Heo C J, Shim J W, Yang S M, Han M G, Lee H S, Jin Y, Lee S Y, Park N and Shin J H 2012 Adv. Mater. 24 2375
[3] Li Z, Dai Q, Deng L, Zheng G and Li G 2021 Opt. Lett. 46 480
[4] Freestone I, Meeks N, Sax M and Higgitt C 2007 Gold Bull. 40 270
[5] Gao X, Wang Q, Cao S, Li R, Hong R and Zhang D 2020 Opt. Express 28 25073
[6] Tae K, Jang L J, Park S J, Ji C, Yang S M, Guo L J and Park H J 2016 Adv. Opt. Mater. 4 1696
[7] Tan S J, Zhang L, Zhu D, Goh X M, Wang Y M, Kumar K, Qiu C W and Yang J K 2014 Nano Lett. 14 4023
[8] Franklin D, Frank R, Wu S T and Chanda D 2017 Nat. Commun. 8 15209
[9] Chow T H, Lai Y, Lu W, Li N and Wang J 2020 ACS Materials Lett. 2 744
[10] Ellenbogen T, Seo K and Crozier K B 2012 Nano Lett. 12 1026
[11] Yang C, Shen W, Zhou J, Zhao D, Zhang X, Ji C, Fang B, Zhang Y, Liu X and Guo L J 2016 Adv. Opt. Mater. 4 1981
[12] Ye M, Sun L, Hu X, Shi B, Zeng B, Wang L, Zhao J, Yang S, Tai R, Fecht H, Jiang J and Zhang D 2015 Opt. Lett. 40 4979
[13] Jang J, Badloe T, Yang Y, Lee T, Mun J and Rho J 2020 ACS Nano 14 15317
[14] Yang W, Xiao S, Song Q, Liu Y, Wu Y, Wang S, Yu J, Han J and Tsai D P 2020 Nat. Commun. 11 1
[15] Yang J, Babicheva V E, Yu M, Lu T, Lin T and Chen K 2020 ACS Nano 14 5678
[16] Sun S, Yang W, Zhang C, Jing J, Gao Y, Yu X, Song Q and Xiao S 2018 ACS Nano 12 2151
[17] Song S, Ma X, Pu M, Li X, Liu K, Gao P, Zhao Z, Wang Y, Wang C and Luo X 2017 Adv. Opt. Mater. 5 1600829
[18] Zhu L, Kapraun J, Ferrara J and Hasnain C J 2015 Optica 2 255
[19] Nagasaki Y, Suzuki M, Hotta I and Takahara J 2018 ACS Photon. 5 1460
[20] Jang J, Jeong H, Hu G, Qiu C, Nam K T and Rho J 2019 Adv. Opt. Mater. 7 1970016
[21] Rezaei S D, Ho J, Naderi A, Yaraki M T, Wang T, Dong Z, Ramakrishna S and Yang J K 2019 Adv. Opt. Mater. 7 1900735
[22] Wu Q, Wang H, Jia H, Cao Q, Wang X, Zhang D and Jiang J 2020 Opt. Commun. 460 125085
[23] Shao L, Zhuo X and Wang J 2018 Adv. Mater. 30 1704338
[24] Yang C, Shen W, Zhang Y, Peng H, Zhang X and Liu X 2014 Opt. Express 22 11384
[25] Sharma G, Wu W and Dalal E N 2005 Color Res. Appl. 30 21
[26] Willets K A and Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
[27] Nordlander P, Oubre C, Prodan E, Li K and Stockman M I 2004 Nano Lett. 4 899
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[4] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[5] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[6] Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation
Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和). Chin. Phys. B, 2021, 30(7): 070201.
[7] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[8] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[9] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
Jiahui Hu(胡嘉卉), Jungang Wang(王俊刚), Yufeng Nie(聂玉峰), Yanwei Luo(罗艳伟). Chin. Phys. B, 2019, 28(10): 100201.
[10] New hybrid FDTD algorithm for electromagnetic problem analysis
Xin-Bo He(何欣波), Bing Wei(魏兵), Kai-Hang Fan(范凯航), Yi-Wen Li(李益文), Xiao-Long Wei(魏小龙). Chin. Phys. B, 2019, 28(7): 074102.
[11] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[12] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
[13] Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2019, 28(2): 024203.
[14] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[15] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
No Suggested Reading articles found!