Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066401    DOI: 10.1088/1674-1056/28/6/066401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks

M Kurt1, H Yurtseven2, A Kurt3, S Aksoy1
1 Department of Physics, Çanakkale 18 Mart University, 17100 Çanakkale, Turkey;
2 Department of Physics, Middle East Technical University, 06531 Ankara, Turkey;
3 Lapseki ?ÇDA? Ç?B MTAL High School, 17100 Çanakkale, Turkey
Abstract  

The ρ(NH2) infrared (IR) frequencies and the corresponding full width at half maximum (FWHM) values for (CH3)2NH2FeM(HCOO)6 (DMFeM, M=Ni, Zn, Cu, Fe, and Mg) are analyzed at various temperatures by using the experimental data from the literature. For the analysis of the IR frequencies of the ρ (NH2) mode which is associated with the structural phase transitions in those metal structures, the temperature dependence of the mode frequency is assumed as an order parameter and the IR frequencies are calculated by using the molecular field theory. Also, the temperature dependence of the IR frequencies and of the damping constant as calculated from the models of pseudospin (dynamic disorder of dimethylammonium (DMA+) cations)-phonon coupling (PS) and of the energy fluctuation (EF), is fitted to the observed data for the wavenumber and FWHM of the ρ (NH2) IR mode of the niccolites studied here. We find that the observed behavior of the IR frequencies and the FWHM of this mode can be described adequately by the models studied for the crystalline structures of interest. This method of calculating the frequencies (IR and Raman) and FWHM of modes which are responsible for the phase transitions can also be applied to some other metal organic frameworks.

Keywords:  infrared (IR) frequency      full width at half maximum (FWHM)      phase transitions      ρ(NH2) mode      niccolites  
Received:  28 January 2019      Revised:  10 April 2019      Accepted manuscript online: 
PACS:  64.10.+h (General theory of equations of state and phase equilibria)  
  64.60.-i (General studies of phase transitions)  
  64.70.-p (Specific phase transitions)  
Corresponding Authors:  M Kurt     E-mail:  mkurt@comu.edu.tr

Cite this article: 

M Kurt, H Yurtseven, A Kurt, S Aksoy Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks 2019 Chin. Phys. B 28 066401

[1] Allendorf M, Bauer C A, Bhakta R K and Houk R J T 2009 Chem. Soc. Rev. 38 1330
[2] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S B T and Hupp J T 2009 Chem. Soc. Rev. 38 1450
[3] Kreno L E, Leong K, Farha O K, Allendorf M, Duyne R P V and Hupp J T 2012 Chem. Rev. 112 1105
[4] Zhang W and Xiong R G 2012 Chem. Rev. 112 1163
[5] Rogez G, Viart N and Drillon M 2010 Angew Chem. Int. Ed. 49 1921
[6] Mason J A, Veenstra M and Long J R 2014 Chem. Sci. 5 32
[7] Maczka M, Sieradzki A, Bondzior B, Deren P, Hanuza J and Hermanowicz K 2015 J. Mater. Chem. C 3 9337
[8] Ghosh S, Di Sante D and Stroppa A 2015 J. Phys. Chem. Lett. 6 4553
[9] Maczka M, Pasinska K, Ptak M, Paraguassu W, Almeida da Silva T, Sieradzki A and Pikul A 2016 Phys. Chem. Chem. Phys. 18 31653
[10] Clune A J, Hughey K D, Lee C, Abhyankar N, Ding X, Dalal N S, Whangbo M H, Singleton J and Musfeld J L 2017 Phys. Rev. B 96 104424
[11] Maczka M, Gagor A, Ptak M, Paraguassu W, Almeida da Silva T, Sieradzki A and Pikul A 2017 Chem. Mater. 29 2264
[12] Ciupa A, Maczka M, Gagor A, Pikul A and Ptak M 2015 Dalton Trans. 44 13234
[13] Ciupa A, Maczka M, Gagor A, Sieradzki A, Trzmiel J, Pikul A and Ptak M 2015 Dalton Trans. 44 8846
[14] Hagen K S, Naik S G, Huynh B H, Masello A and Christou G J 2009 Am. Chem. Soc. 131 7516
[15] Canadillas-Delgado L, Fabelo O, Rodriguez-Velamazan J A, Lemee-Cailleau M H, Mason S A, Pardo E, Lloret F, Zhao J P, Bu X H, Simonet V, Colin C V and Rodriguez-Carvajal J 2012 J. Am. Chem. Soc. 134 19772
[16] Yamada Y, Mori M and Noda Y 1972 J. Phys. Soc. Jpn. 32 1565
[17] Matsushita M 1967 J. Chem. Phys. 65 23
[18] Lahajnar G, Blinc R and Zumer S 1974 Phys. Cond. Matter 18 301
[19] Schaack G and Winterfeldt V 1977 Ferroelectrics 15 35
[20] Laulicht I 1978 J. Phys. Chem. Solids 39 901
[21] Brout R 1965 Phase Transitions (NewYork: Benjamin) pp. 7-44
[22] Yurtseven H and Karacali H 2006 Spectrochimica Acta A 65 421
[23] Zhao J P, Hu B W, Lloret F, Tao J, Yang Q, Zhang X F and Bu X H 2010 Inorg. Chem. 49 10390
[24] Jain P, Ramchandron V, Clark R J, Zhou H D, Toby R H, Dalal N S, Kroto H W and Cheetham A K J 2009 J. Am. Chem. Soc. 131 13625
[25] Fu D W, Zhang W, Cai H L, Zhang Y, Ge J Z, Xiong R G, Huang S D and Nakamura T 2011 Angew. Chem. Int. Ed. 50 11947
[26] Maczka M, Ptak M and Macalik L 2014 Vib. Spectrosc. 71 98
[27] Sanchez-Andujar M, Gomez-Aguirre L C, Pato Doldan B, Yanez-Vilar S, Artiga R, Llamas-Saiz A L, Manna R S, Schnelle S, Lang M, Ritter F, Haghighirad A and Senaris-Rodriguez M A 2014 Cryst. Eng. Comm. 6 3558
[28] Maczka M, Zierkiewicz W, Michalska D and Hanuza J 2014 Spectrochim. Acta A 128 674
[29] Maczka M, Gagor A, Macalik B, Pikul A, Ptak M and Hanuza J 2014 Inorg. Chem. 53 457
[30] Maczka M, Pietraszko A, Macalik L, Sieradzki A, Trzmiel J and Pikul A 2014 Dalton Trans. 43 17075
[31] Shang R, Chen S, Wang Z M and Gao S 2014 Metal-Organic Framework Materials, eds. MacGilliuray R L and Lukehart C M (John Wiley Sons) pp. 221-238
[32] Wang W, Yan L Q, Cong J Z, et al. 2013 Sci. Rep. 3 2024
[33] Gou M, Cai H L and Xiong R G 2010 Inorg. Chem. Commun. 13 1590
[34] Yurtseven H and Arslan A 2018 Ferroelectrics 526 9
[35] Szymborska-Malek K, Trzebiatowska-Gutowska M, Maczka M and Gagor A 2016 Spectrochim. Acta A 159 35
[36] Maczka M, Almedia da Silva T, Paraguassu W and Pereira da Silva K 2016 Spectrochim. Acta. A 156 112
[37] Maczka M, Kadlubanski P, Freire P T C, Macalik B, Paraguassu W, Hermanowicz K and Hanuza J 2014 Inorg. Chem. 53 9615
[38] Sanchez-Andujar M, Presedo S, Yanez-Vilar S, et al. 2010 Inorg. Chem. 49 1510
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[4] Discontinuous and continuous transitions of collective behaviors in living systems
Xu Li(李旭), Tingting Xue(薛婷婷), Yu Sun(孙宇), Jingfang Fan(樊京芳), Hui Li(李辉), Maoxin Liu(刘卯鑫), Zhangang Han(韩战钢), Zengru Di(狄增如), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2021, 30(12): 128703.
[5] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[6] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[7] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[8] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[9] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
[10] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[11] Fidelity spectrum: A tool to probe the property of a quantum phase
Wing Chi Yu, Shi-Jian Gu. Chin. Phys. B, 2016, 25(3): 030501.
[12] Carrier behavior of HgTe under high pressure revealed by Hall effect measurement
Hu Ting-Jing (胡廷静), Cui Xiao-Yan (崔晓岩), Li Xue-Fei (李雪飞), Wang Jing-Shu (王婧姝), Lü Xiu-Mei (吕秀梅), Wang Ling-Sheng (王棱升), Yang Jing-Hai (杨景海), Gao Chun-Xiao (高春晓). Chin. Phys. B, 2015, 24(11): 116401.
[13] Phase behaviors of binary mixtures composed of banana-shaped and calamitic mesogens
M. Cvetinov, D. Ž. Obadović, M. Stojanović, A. Vajda, K. Fodor-Csorba, N. Eber, I. Ristić. Chin. Phys. B, 2014, 23(9): 096402.
[14] Characteristics of phase transitions via intervention in random networks
Jia Xiao (贾啸), Hong Jin-Song (洪劲松), Yang Hong-Chun (杨宏春), Yang Chun (杨春), Shi Xiao-Hong (史晓红), Hu Jian-Quan (胡建全). Chin. Phys. B, 2014, 23(7): 076401.
[15] Nonequilibrium behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model
Ümüt Temizer. Chin. Phys. B, 2014, 23(7): 070511.
No Suggested Reading articles found!