Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 068902    DOI: 10.1088/1674-1056/acb9fc
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Robust multi-task distributed estimation based on generalized maximum correntropy criterion

Qian Hu(胡倩), Feng Chen(陈枫), and Ming Ye(叶明)
College of Artificial Intelligence, Southwest University, Chongqing 400715, China
Abstract  False data injection (FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Based on this, we propose a diffusion least-mean-square algorithm based on the generalized maximum correntropy criterion (GMCC-DLMS) for multi-task networks. The algorithm achieves gratifying estimation results. Even more, compared to the related work, it has better robustness when the number of attacked nodes increases. Moreover, the assumption about the number of attacked nodes is relaxed, which is applicable to multi-task environments. In addition, the performance of the proposed GMCC-DLMS algorithm is analyzed in the mean and mean-square senses. Finally, simulation experiments confirm the performance and effectiveness against FDI attacks of the algorithm.
Keywords:  distributed estimation      generalized correntropy      multi-task networks      adaptive filtering  
Received:  12 August 2022      Revised:  09 January 2023      Accepted manuscript online:  08 February 2023
PACS:  89.70.Cf (Entropy and other measures of information)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
  89.70.-a (Information and communication theory)  
  43.60.Jn (Source localization and parameter estimation)  
Corresponding Authors:  Ming Ye     E-mail:  zmxym@swu.edu.cn

Cite this article: 

Qian Hu(胡倩), Feng Chen(陈枫), and Ming Ye(叶明) Robust multi-task distributed estimation based on generalized maximum correntropy criterion 2023 Chin. Phys. B 32 068902

[1] Kassal P, Steinberg M D and Steinberg I M 2018 Sensor. Actuat. B-Chem. 266 228
[2] Deng Y, Mo Z and Lu H 2022 Chin. Phys. B 31 020503
[3] Modalavalasa S, Sahoo U K, Sahoo A K and Baraha S 2021 Signal Process. 188 108150
[4] Park Y G, Lee S and Park J U 2019 Sensors 19 4353
[5] Cattivelli F S and Sayed A H 2009 IEEE Trans. Signal Process. 58 1035
[6] Hassani A, Plata-Chaves J, Bahari M H, Moonen M and Bertrand A 2017 IEEE J. Sel. Top. Signal Process. 11 518
[7] Sun S, Lin H, Ma J and Li X 2017 Inform. Fusion 38 122
[8] He S, Shin H S, Xu S Y and Tsourdos A 2020 Inform. Fusion 54 21
[9] Chen F, Li X, Duan S, Wang L and Wu J 2018 Digit. Signal Process. 81 16
[10] Chen J, Richard C and Sayed A H 2014 IEEE Trans. Signal Process. 62 4129
[11] Huang W, Yang X and Shen G 2017 Inf. Sci. 382 115
[12] Li B, Xiao G, Lu R, Deng R and Bao H 2020 IEEE Trans. Ind. Inform. 16 854
[13] Wu H, Zhou B and Zhang C 2022 IEEE Trans. Autom. Sci. Eng. 19 2552
[14] Song X, Zhang Q, Wang M and Song S 2021 Nonlinear Dynam. 106 3183
[15] Borup K T, Fossen T I and Johansen T A 2020 IEEE Trans. Aerosp. Electron. Syst. 56 2157
[16] Luo J and Cao Z 2015 Int. J. Distrib. Sens. Netw. 11 381642
[17] Chen B, Ho D W C, Zhang W and Yu L 2019 IEEE Trans. Syst. Man Cybern. -Syst. 49 455
[18] Yang Y, Xu H and Yue D 2019 IEEE Trans. Circuits Syst. I:-Regul. Pap. 66 3089
[19] An L and Yang G 2021 Automatica 129 109664
[20] Liu J, Suo W, Zha L, Tian E and Xie X 2020 Int. J. Robust. Nonlin. 30 1156
[21] Xie J, Zhu S and Zhang D 2022 ISA Trans. 127 22
[22] Zhou J, Chen B and Yu L 2020 IEEE Trans. Circuits Syst. II:-Express Briefs 67 2762
[23] Hua Y, Chen F, Deng S, Duan S and Wang L 2020 Inf. Sci. 515 248
[24] Liu Y and Li C 2018 IEEE Trans. Aerosp. Electron. Syst. 54 1815
[25] Shui Y, Wang Y, Li Y, Shan Y, Cui N and Pang B 2021 Appl. Sci. 11 4564
[26] Shi Q, Feng M, Li X, Wang S and Chen F 2020 IEEE Trans. Circuits Syst. I:-Regul. Pap. 67 5125
[27] Li J, Abbas W and Koutsoukos X 2019 IEEE Trans. Signal Inf. Process. Netw. 6 1
[28] Yu T, De Lamare R C and Yu Y 2022 IEEE Trans. Signal Process. 70 2826
[29] Chen B, Xing L, Zhao H, Zheng N and Principe J C 2016 IEEE Trans. Signal Process. 64 3376
[30] Chen B, Yuan Z, Zheng N and Principe J C 2013 Neurocomputing 121 160
[31] Chen B, Xing L, Xu B, Zhao H and Principe J C 2016 IEEE Trans. Neural Netw. Learn. Syst. 29 731
[32] Chen B, Dang L, Gu Y, Zheng N and Principe J C 2019 IEEE Trans. Syst. Man Cybern.: -Syst. 51 5819
[33] Chen B, Xing L, Zheng N and Principe J C 2018 IEEE Trans. Neural Netw. Learn. Syst. 30 1370
[34] Chen B, Wang X, Li Y and Principe J C 2019 IEEE Signal Process. Lett. 26 1212
[35] Dang L, Chen B, Wang S, Gu Y and Principe J C 2019 IEEE Trans. Circuits Syst. I:-Regul. Pap. 66 4265
[36] Sayed A H 2014 Academic Press Library in Signal Processing (Amerstadam: Elsevier) pp. 323-453
[37] Yu F, Dutta R G, Zhang T, Hu Y and Jin Y 2020 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 3555
[1] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[2] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
[3] Oscillatory Shannon entropy in the process of equilibration of nonequilibrium crystalline systems
A. Giri, Nilangshu K. Das, P. Barat. Chin. Phys. B, 2015, 24(8): 088902.
[4] Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach
H R Baghshahi, M K Tavassoly, A Behjat. Chin. Phys. B, 2014, 23(7): 074203.
[5] Optimal network structure to induce the maximal small-world effect
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(2): 028902.
[6] Measuring causality by directional symbolic mutual information approach
Chen Gui (陈贵), Xie Lei (谢磊), Chu Jian (褚健). Chin. Phys. B, 2013, 22(3): 038902.
No Suggested Reading articles found!