CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-performance spin-filtering and spin-rectifying effects in Blatter radical-based molecular spintronic device |
Chun-Xu Tong(童春旭)1, Peng Zhao(赵朋)1,†, and Gang Chen(陈刚)2 |
1 School of Physics and Technology, University of Jinan, Jinan 250022, China; 2 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract We design a Blatter radical-based molecular spintronic device, and investigate its spin-polarized transport properties using density functional theory and non-equilibrium Green's function technique. High-performance spin-rectifying and spin-filtering effects are realized. The physical mechanism is explained by the spin-resolved bias voltage-dependent transmission spectra, the energy levels of the corresponding molecular projected self-consistent Hamiltonian orbitals, and their spatial distributions. The results demonstrate that the Blatter radical has great potential in the development of high-performance multifunctional molecular spintronic devices.
|
Received: 05 December 2022
Revised: 03 March 2023
Accepted manuscript online: 05 March 2023
|
PACS:
|
72.25.-b
|
(Spin polarized transport)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MA059). |
Corresponding Authors:
Peng Zhao
E-mail: ss_zhaop@ujn.edu.cn
|
Cite this article:
Chun-Xu Tong(童春旭), Peng Zhao(赵朋), and Gang Chen(陈刚) High-performance spin-filtering and spin-rectifying effects in Blatter radical-based molecular spintronic device 2023 Chin. Phys. B 32 067202
|
[1] Majumder C, Mizuseki H and Kawazoe Y2001 J. Phys. Chem. A 105 9454 [2] Bu D, Xiong Y, Tan Y N, Meng M and Liu C Y2018 Chem. Commun. 54 3632 [3] Kondo H, Nara J and Ohno T2011 J. Phys. Chem. C 115 6886 [4] Pour M M, Lashkov A, Radocea A, Liu X, Sun T, Lipatov A, Korlacki R A, Shekhirev M, Aluru N R, Lyding J W, Sysoev V and Sinitskii A2017 Nat. Commun. 8 820 [5] Yin X, Zang Y, Zhu L, Low J Z, Liu Z F, Cui J, Neaton J B, Venkataraman L and Cammpos L M2017 Sci. Adv. 3 eaao2615 [6] Chandler H J, Stefanou M, Campbell E E B and Schaub R2019 Nat. Commun. 10 2283 [7] Chen J, Reed M A, Rawlett A M and Tour J M1999 Science 286 1550 [8] Zhao P, Liu D S, Zhang Y, Su Y, Liu H Y, Li S J and Chen G2012 J. Phys. Chem. C 116 7968 [9] Aviram A and Ratner M A1974 Chem. Phys. Lett. 29 277 [10] Wolf S A, Awschalom D D, Buhrman R A, Daughton J A, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M2001 Science 294 1488 [11] Rocha A R, García-suárez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S2005 Nat. Mater. 4 335 [12] Ferrer J and García-suárez V M2009 J. Mater. Chem. 19 1696 [13] Lakshmi S, Roche S and Cuniberti G2009 Phys. Rev. B 80 193404 [14] Herrmann C, Rolomon G C and Ratner M A2010 J. Am. Chem. Soc. 132 3682 [15] Smeu M and DiLabio G A2010 J. Phys. Chem. C 114 17874 [16] Shil S, Bhattacharya D, Misra A and Klein D J2015 Phys. Chem. Chem. Phys. 17 23378 [17] Bajaj A, Kaur P, Sud A, Berritta M and Ali M E2020 J. Phys. Chem. C 124 24361 [18] Smeu M, Monti O L A and McGrath D2021 Phys. Chem. Chem. Phys. 23 24106 [19] Li Y F, Zhao P, Xu Z and Chen G2022 Chem. Phys. Lett. 794 139515 [20] Blatter H M and Lukaszewski H1968 Tetrahedron Lett. 9 2701 [21] Grant J A, Lu Z, Tucker D E, Hockin B M, Yufit D S, Fox M A, Kataky R, Chechik V and O'Donoghue A C2017 Nat. Commun. 8 15088 [22] Ji Y, Long L and Zheng Y2020 Mater. Chem. Front. 4 3433 [23] Rogers F J M, Norcott P L and Coote M L2020 Org. Biomol. Chem. 18 8255 [24] Yan B, Cramen J, McDonald R and Frank N L2011 Chem. Commun. 47 3201 [25] Ciccullo F, Gallagher N M, Geladari O, Chassé T, Rajca A and Casu M B2016 ACS Appl. Mater. Interfaces 8 1805 [26] Demetriou M, Berezin A A, Koutentis P A and Krasia-Christoforou T2014 Polym. Int. 63 674 [27] Kuznetsova Y L, Vavilova A S, Malysheva Y B, Lopatin M A, Grishin I D, Burdyukova T O, Zaburdaeva E A, Polozov E Y and Fedorov A Y2020 Russ. Chem. Bull. 69 1470 [28] Ciccullo F, Calzolari A, Bader K, Neugebauer P, Gallagher N M, Rajca A, van Slageren J and Casu M B2019 ACS Appl. Mater. Interfaces 11 1571 [29] Sellers H, Ulman A, Shnidman Y and Eilers J E1993 J. Am. Chem. Soc. 115 9389 [30] Larsen N B, Biebuyck H, Delamarche E and Michel B1997 J. Am. Chem. Soc. 119 3017 [31] Damle P, Rakshit T, Paulsson M and Datta S2002 IEEE Trans. Nanotechnol. 1 145 [32] Büttiker M, Imry Y, Landauer R and Pinhas S1985 Phys. Rev. B 31 6207 [33] Taylor J, Guo H and Wang J2001 Phys. Rev. B 63 121104 [34] Taylor J, Guo H and Wang J2001 Phys. Rev. B 63 245407 [35] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K2002 Phys. Rev. B 65 165401 [36] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D2002 J. Phys.: Condens. Matter 14 2745 [37] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865 [38] Troullier N and Martins J1991 Phys. Rev. B 43 1993 [39] Stokbro K, Taylor J, Brandbyge M, Mozos J L and Ordejón P2003 Comput. Mater. Sci. 27 151 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|