Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067202    DOI: 10.1088/1674-1056/acc16d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-performance spin-filtering and spin-rectifying effects in Blatter radical-based molecular spintronic device

Chun-Xu Tong(童春旭)1, Peng Zhao(赵朋)1,†, and Gang Chen(陈刚)2
1 School of Physics and Technology, University of Jinan, Jinan 250022, China;
2 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  We design a Blatter radical-based molecular spintronic device, and investigate its spin-polarized transport properties using density functional theory and non-equilibrium Green's function technique. High-performance spin-rectifying and spin-filtering effects are realized. The physical mechanism is explained by the spin-resolved bias voltage-dependent transmission spectra, the energy levels of the corresponding molecular projected self-consistent Hamiltonian orbitals, and their spatial distributions. The results demonstrate that the Blatter radical has great potential in the development of high-performance multifunctional molecular spintronic devices.
Keywords:  spin-filtering      spin-rectifying      molecular spintronic device      Blatter radical  
Received:  05 December 2022      Revised:  03 March 2023      Accepted manuscript online:  05 March 2023
PACS:  72.25.-b (Spin polarized transport)  
  85.65.+h (Molecular electronic devices)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MA059).
Corresponding Authors:  Peng Zhao     E-mail:  ss_zhaop@ujn.edu.cn

Cite this article: 

Chun-Xu Tong(童春旭), Peng Zhao(赵朋), and Gang Chen(陈刚) High-performance spin-filtering and spin-rectifying effects in Blatter radical-based molecular spintronic device 2023 Chin. Phys. B 32 067202

[1] Majumder C, Mizuseki H and Kawazoe Y2001 J. Phys. Chem. A 105 9454
[2] Bu D, Xiong Y, Tan Y N, Meng M and Liu C Y2018 Chem. Commun. 54 3632
[3] Kondo H, Nara J and Ohno T2011 J. Phys. Chem. C 115 6886
[4] Pour M M, Lashkov A, Radocea A, Liu X, Sun T, Lipatov A, Korlacki R A, Shekhirev M, Aluru N R, Lyding J W, Sysoev V and Sinitskii A2017 Nat. Commun. 8 820
[5] Yin X, Zang Y, Zhu L, Low J Z, Liu Z F, Cui J, Neaton J B, Venkataraman L and Cammpos L M2017 Sci. Adv. 3 eaao2615
[6] Chandler H J, Stefanou M, Campbell E E B and Schaub R2019 Nat. Commun. 10 2283
[7] Chen J, Reed M A, Rawlett A M and Tour J M1999 Science 286 1550
[8] Zhao P, Liu D S, Zhang Y, Su Y, Liu H Y, Li S J and Chen G2012 J. Phys. Chem. C 116 7968
[9] Aviram A and Ratner M A1974 Chem. Phys. Lett. 29 277
[10] Wolf S A, Awschalom D D, Buhrman R A, Daughton J A, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M2001 Science 294 1488
[11] Rocha A R, García-suárez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S2005 Nat. Mater. 4 335
[12] Ferrer J and García-suárez V M2009 J. Mater. Chem. 19 1696
[13] Lakshmi S, Roche S and Cuniberti G2009 Phys. Rev. B 80 193404
[14] Herrmann C, Rolomon G C and Ratner M A2010 J. Am. Chem. Soc. 132 3682
[15] Smeu M and DiLabio G A2010 J. Phys. Chem. C 114 17874
[16] Shil S, Bhattacharya D, Misra A and Klein D J2015 Phys. Chem. Chem. Phys. 17 23378
[17] Bajaj A, Kaur P, Sud A, Berritta M and Ali M E2020 J. Phys. Chem. C 124 24361
[18] Smeu M, Monti O L A and McGrath D2021 Phys. Chem. Chem. Phys. 23 24106
[19] Li Y F, Zhao P, Xu Z and Chen G2022 Chem. Phys. Lett. 794 139515
[20] Blatter H M and Lukaszewski H1968 Tetrahedron Lett. 9 2701
[21] Grant J A, Lu Z, Tucker D E, Hockin B M, Yufit D S, Fox M A, Kataky R, Chechik V and O'Donoghue A C2017 Nat. Commun. 8 15088
[22] Ji Y, Long L and Zheng Y2020 Mater. Chem. Front. 4 3433
[23] Rogers F J M, Norcott P L and Coote M L2020 Org. Biomol. Chem. 18 8255
[24] Yan B, Cramen J, McDonald R and Frank N L2011 Chem. Commun. 47 3201
[25] Ciccullo F, Gallagher N M, Geladari O, Chassé T, Rajca A and Casu M B2016 ACS Appl. Mater. Interfaces 8 1805
[26] Demetriou M, Berezin A A, Koutentis P A and Krasia-Christoforou T2014 Polym. Int. 63 674
[27] Kuznetsova Y L, Vavilova A S, Malysheva Y B, Lopatin M A, Grishin I D, Burdyukova T O, Zaburdaeva E A, Polozov E Y and Fedorov A Y2020 Russ. Chem. Bull. 69 1470
[28] Ciccullo F, Calzolari A, Bader K, Neugebauer P, Gallagher N M, Rajca A, van Slageren J and Casu M B2019 ACS Appl. Mater. Interfaces 11 1571
[29] Sellers H, Ulman A, Shnidman Y and Eilers J E1993 J. Am. Chem. Soc. 115 9389
[30] Larsen N B, Biebuyck H, Delamarche E and Michel B1997 J. Am. Chem. Soc. 119 3017
[31] Damle P, Rakshit T, Paulsson M and Datta S2002 IEEE Trans. Nanotechnol. 1 145
[32] Büttiker M, Imry Y, Landauer R and Pinhas S1985 Phys. Rev. B 31 6207
[33] Taylor J, Guo H and Wang J2001 Phys. Rev. B 63 121104
[34] Taylor J, Guo H and Wang J2001 Phys. Rev. B 63 245407
[35] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K2002 Phys. Rev. B 65 165401
[36] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D2002 J. Phys.: Condens. Matter 14 2745
[37] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865
[38] Troullier N and Martins J1991 Phys. Rev. B 43 1993
[39] Stokbro K, Taylor J, Brandbyge M, Mozos J L and Ordejón P2003 Comput. Mater. Sci. 27 151
[1] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[2] Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印). Chin. Phys. B, 2017, 26(6): 067201.
No Suggested Reading articles found!