Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067103    DOI: 10.1088/1674-1056/acc7f9
RAPID COMMUNICATION Prev   Next  

Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy

Zilu Wang(王子禄)1,2, Haoyu Dong(董皓宇)1,2, Weichang Zhou(周伟昌)3,†, Zhihai Cheng(程志海)1,2,‡, and Shancai Wang(王善才)1,2,§
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China;
3 School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha 410081, China
Abstract  Layered transition metal dichalcogenides (TMDCs) gained widespread attention because of their electron-correlation-related physics, such as charge density wave (CDW), superconductivity, etc. In this paper, we report the high-resolution angle-resolved photoemission spectroscopy (ARPES) studies on the electronic structure of Ti-doped $1T$-Ti$_x$Ta$_{1-x}$S$_2$ with different doping levels. We observe a flat band that originates from the formation of the star of David super-cell at the $x=5$% sample at the low temperature. With the increasing Ti doping levels, the flat band vanishes in the $x=8$% sample due to the extra hole carrier. We also find the band shift and variation of the CDW gap caused by the Ti-doping. Meanwhile, the band folding positions and the CDW vector $\bm q_{{\rm{CDW}}}$ are intact. Our ARPES results suggest that the localized flat band and the correlation effect in the $1T$-TMDCs could be tuned by changing the filling factor through the doping electron or hole carriers. The Ti-doped $1T$-Ti$_x$Ta$_{1-x}$S$_2$ provides a platform to fine-tune the electronic structure evolution and a new insight into the strongly correlated physics in the TMDC materials.
Keywords:  transition metal dichalcogenides      charge density wave      electronic structure      angle-resolved photoemission spectroscopy (ARPES)  
Received:  23 November 2022      Revised:  22 March 2023      Accepted manuscript online:  28 March 2023
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.45.Lr (Charge-density-wave systems)  
  71.28.+d (Narrow-band systems; intermediate-valence solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274455, 11774421, 21622304, 61674045, 11604063, and 12074116), the National Key R&D Program of China (Grant Nos. 2016YFA0200700 and 2022YFA1403800), and the Strategic Priority Research Program (Chinese Academy of Sciences, CAS) (Grant No. XDB30000000). Z. H. Cheng was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (Grant No. 21XNLG27).
Corresponding Authors:  Weichang Zhou, Zhihai Cheng, Shancai Wang     E-mail:  wchangzhou@hunnu.edu.cn;zhihaicheng@ruc.edu.cn;scw@ruc.edu.cn

Cite this article: 

Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才) Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy 2023 Chin. Phys. B 32 067103

[1] Castro Neto A H2001 Phys. Rev. Lett. 86 4382
[2] Rossnagel K2011 J. Phys.: Condens. Matter 23 213001
[3] Borisenko S V, Kordyuk A A, Yaresko A N, Zabolotnyy V B, Inosov D S, Schuster R, Büchner B, Weber R, Follath R, Patthey L and Berger H2008 Phys. Rev. Lett. 100 19640
[4] Fazekas P and Tosatti E1979 Philos. Mag. B 39 229
[5] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E2008 Nat. Mater. 7 960
[6] Mañas-Valero S, Huddart B M, Lancaster T, Coronado E and Pratt F L2021 NPJ Quantum Mater. 6 69
[7] Gao J J, Zhang W H, Si J G, Luo X, Yan J, Jiang Z Z, Wang W, Lv H Y, Tong P, Song W H, Zhu X B, Lu W J, Yin Y and Sun Y P2021 Appl. Phys. Lett. 118 213105
[8] Lin H, Huang W, Zhao K, Qiao S, Liu Z, Wu J, Chen X and Ji S H2020 Nano Res. 13 133
[9] Scruby C B, Williams P M and Parry G S1975 Philos. Mag. 31 255
[10] Fazekas P and Tosatti E1980 Physica B+C 99 183
[11] Wilson J A, Di Salvo F J and Mahajan S1975 Adv. Phys. 24 117
[12] Manzke R, Buslaps T, Pfalzgraf B, Skibowski M and Anderson O1989 Europhys. Lett. 8 195
[13] Pillo T, Hayoz J, Berger H, Fasel R, Schlapbach L and Aebi P2000 Phys. Rev. B 62 4277
[14] Law K T and Lee P A2017 Proc. Natl. Acad. Sci. USA 114 6996
[15] He W Y, Xu X Y, Chen G, Law K T and Lee P A2018 Phys. Rev. Lett. 121 046401
[16] Xue X, Wang X, Song Y and Mi W2018 J. Alloys Compd. 739 723
[17] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J2008 Phys. Rev. B 78 104520
[18] Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L J, Lu W J, Sun Y P and Takahashi T2012 Phys. Rev. Lett. 109 176403
[19] Ritschel T, Trinckauf J, Garbarino G, Hanfland M, Zimmermann M V, Berger H, Büchner B and Geck J2013 Phys. Rev. B 87 125135
[20] Di Salvo F J, Wilson J A, Bagley B G and Waszczak J V1975 Phys. Rev. B 12 2220
[21] Thompson A H, Pisharody K R and Koehler R F1972 Phys. Rev. Lett. 29 163
[22] Arita M, Negishi H, Shimada K, Xu F, Ino A, Takeda Y, Yamazaki K, Kimura A, Qiao S, Negishi S, Sasaki M, Namatame H and Tanigu M2004 Physica B 351 265
[23] Clerc F, Battaglia C, Bovet M, Despont L, Monney C, Cercellier H, Garnier M G, Aebi P, Berger H and Forró L2006 Phys. Rev. B 74 155114
[24] Qiao Y B, Li Y L, Zhong G H, Zeng Z and Qin X Y2007 Chin. Phys. 16 3809
[25] Wen W, Dang C H and Xie L M2019 Chin. Phys. B 28 058504
[26] Hu Q, Yin C, Zhang L L, Lei L, Wang Z S, Chen Z Y, Tang J and Ang R2018 Chin. Phys. B 27 017104
[27] Zhang W, Gao J, Cheng L, Bu K, Wu Z, Fei Y, Zheng Y, Wang L, Li F, Luo X, Liu Z, Sun Y and Yin Y2022 NPJ Quantum Mater. 7 8
[28] Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y and Zhang Y2020 Nat. Commun. 11 4215
[29] Djurdjić Mijin S, Baum A, Bekaert J, Šolajić A, Pešić J, Liu Y, He Ge, Milošević M V, Petrovic C, Popović Z V, Hackl R and Lazarević N2021 Phys. Rev. B 103 245133
[30] Chen X M, Miller A J, Nugroho C, de la Peña G A, Joe Y I, Kogar A, Brock J D, Geck J, MacDougall G J, Cooper S L, Fradkin E, Van Harlingen D J and Abbamonte P2015 Phys. Rev. B 91 245113
[1] Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(7): 077101.
[2] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[3] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[4] Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2023, 32(5): 057303.
[5] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[6] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[7] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[10] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[15] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
No Suggested Reading articles found!