|
|
Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy |
Zilu Wang(王子禄)1,2, Haoyu Dong(董皓宇)1,2, Weichang Zhou(周伟昌)3,†, Zhihai Cheng(程志海)1,2,‡, and Shancai Wang(王善才)1,2,§ |
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China; 3 School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha 410081, China |
|
|
Abstract Layered transition metal dichalcogenides (TMDCs) gained widespread attention because of their electron-correlation-related physics, such as charge density wave (CDW), superconductivity, etc. In this paper, we report the high-resolution angle-resolved photoemission spectroscopy (ARPES) studies on the electronic structure of Ti-doped $1T$-Ti$_x$Ta$_{1-x}$S$_2$ with different doping levels. We observe a flat band that originates from the formation of the star of David super-cell at the $x=5$% sample at the low temperature. With the increasing Ti doping levels, the flat band vanishes in the $x=8$% sample due to the extra hole carrier. We also find the band shift and variation of the CDW gap caused by the Ti-doping. Meanwhile, the band folding positions and the CDW vector $\bm q_{{\rm{CDW}}}$ are intact. Our ARPES results suggest that the localized flat band and the correlation effect in the $1T$-TMDCs could be tuned by changing the filling factor through the doping electron or hole carriers. The Ti-doped $1T$-Ti$_x$Ta$_{1-x}$S$_2$ provides a platform to fine-tune the electronic structure evolution and a new insight into the strongly correlated physics in the TMDC materials.
|
Received: 23 November 2022
Revised: 22 March 2023
Accepted manuscript online: 28 March 2023
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
71.28.+d
|
(Narrow-band systems; intermediate-valence solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274455, 11774421, 21622304, 61674045, 11604063, and 12074116), the National Key R&D Program of China (Grant Nos. 2016YFA0200700 and 2022YFA1403800), and the Strategic Priority Research Program (Chinese Academy of Sciences, CAS) (Grant No. XDB30000000). Z. H. Cheng was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (Grant No. 21XNLG27). |
Corresponding Authors:
Weichang Zhou, Zhihai Cheng, Shancai Wang
E-mail: wchangzhou@hunnu.edu.cn;zhihaicheng@ruc.edu.cn;scw@ruc.edu.cn
|
Cite this article:
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才) Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy 2023 Chin. Phys. B 32 067103
|
[1] Castro Neto A H2001 Phys. Rev. Lett. 86 4382 [2] Rossnagel K2011 J. Phys.: Condens. Matter 23 213001 [3] Borisenko S V, Kordyuk A A, Yaresko A N, Zabolotnyy V B, Inosov D S, Schuster R, Büchner B, Weber R, Follath R, Patthey L and Berger H2008 Phys. Rev. Lett. 100 19640 [4] Fazekas P and Tosatti E1979 Philos. Mag. B 39 229 [5] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E2008 Nat. Mater. 7 960 [6] Mañas-Valero S, Huddart B M, Lancaster T, Coronado E and Pratt F L2021 NPJ Quantum Mater. 6 69 [7] Gao J J, Zhang W H, Si J G, Luo X, Yan J, Jiang Z Z, Wang W, Lv H Y, Tong P, Song W H, Zhu X B, Lu W J, Yin Y and Sun Y P2021 Appl. Phys. Lett. 118 213105 [8] Lin H, Huang W, Zhao K, Qiao S, Liu Z, Wu J, Chen X and Ji S H2020 Nano Res. 13 133 [9] Scruby C B, Williams P M and Parry G S1975 Philos. Mag. 31 255 [10] Fazekas P and Tosatti E1980 Physica B+C 99 183 [11] Wilson J A, Di Salvo F J and Mahajan S1975 Adv. Phys. 24 117 [12] Manzke R, Buslaps T, Pfalzgraf B, Skibowski M and Anderson O1989 Europhys. Lett. 8 195 [13] Pillo T, Hayoz J, Berger H, Fasel R, Schlapbach L and Aebi P2000 Phys. Rev. B 62 4277 [14] Law K T and Lee P A2017 Proc. Natl. Acad. Sci. USA 114 6996 [15] He W Y, Xu X Y, Chen G, Law K T and Lee P A2018 Phys. Rev. Lett. 121 046401 [16] Xue X, Wang X, Song Y and Mi W2018 J. Alloys Compd. 739 723 [17] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J2008 Phys. Rev. B 78 104520 [18] Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L J, Lu W J, Sun Y P and Takahashi T2012 Phys. Rev. Lett. 109 176403 [19] Ritschel T, Trinckauf J, Garbarino G, Hanfland M, Zimmermann M V, Berger H, Büchner B and Geck J2013 Phys. Rev. B 87 125135 [20] Di Salvo F J, Wilson J A, Bagley B G and Waszczak J V1975 Phys. Rev. B 12 2220 [21] Thompson A H, Pisharody K R and Koehler R F1972 Phys. Rev. Lett. 29 163 [22] Arita M, Negishi H, Shimada K, Xu F, Ino A, Takeda Y, Yamazaki K, Kimura A, Qiao S, Negishi S, Sasaki M, Namatame H and Tanigu M2004 Physica B 351 265 [23] Clerc F, Battaglia C, Bovet M, Despont L, Monney C, Cercellier H, Garnier M G, Aebi P, Berger H and Forró L2006 Phys. Rev. B 74 155114 [24] Qiao Y B, Li Y L, Zhong G H, Zeng Z and Qin X Y2007 Chin. Phys. 16 3809 [25] Wen W, Dang C H and Xie L M2019 Chin. Phys. B 28 058504 [26] Hu Q, Yin C, Zhang L L, Lei L, Wang Z S, Chen Z Y, Tang J and Ang R2018 Chin. Phys. B 27 017104 [27] Zhang W, Gao J, Cheng L, Bu K, Wu Z, Fei Y, Zheng Y, Wang L, Li F, Luo X, Liu Z, Sun Y and Yin Y2022 NPJ Quantum Mater. 7 8 [28] Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y and Zhang Y2020 Nat. Commun. 11 4215 [29] Djurdjić Mijin S, Baum A, Bekaert J, Šolajić A, Pešić J, Liu Y, He Ge, Milošević M V, Petrovic C, Popović Z V, Hackl R and Lazarević N2021 Phys. Rev. B 103 245133 [30] Chen X M, Miller A J, Nugroho C, de la Peña G A, Joe Y I, Kogar A, Brock J D, Geck J, MacDougall G J, Cooper S L, Fradkin E, Van Harlingen D J and Abbamonte P2015 Phys. Rev. B 91 245113 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|