Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054207    DOI: 10.1088/1674-1056/ac8af6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Four-stage cascaded variable optical attenuator with large attenuation range for quantum key distribution

Qing-Hai Liu(刘清海)1,2, Pan Pan(潘盼)1,†, Jin You(游金)2,3, Jia-Shun Zhang(张家顺)2,‡, Ya Wang(汪亚)1, Yu-Ting Wang(王玉婷)1, Liang-Liang Wang(王亮亮)2,3, Jun-Ming An(安俊明)2,3,4, Da-Jian Cui(崔大健)5,6, Lang Zhou(周浪)5,6, and Wei Chen(陈伟)5,6
1 School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China;
2 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Chongqing Key Laboratory of Core Optoelectronic Devices for Quantum Communication, Chongqing 400060, China;
6 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A four-stage cascaded variable optical attenuator (VOA) with a large attenuation range is presented. The VOA is based on a Mach-Zehnder interferometer (MZI) and fabricated in a silica-based planar lightwave circuit (PLC) platform. The thermo-optic effect is used to achieve intensity modulation. The measured maximum attenuation of the four-stage cascaded VOA is 88.38 dB. The chip is also tested in a quantum key distribution (QKD) system to generate signal and decoy states. The mean photon number after attenuation of the four-stage cascaded VOA is less than 0.1, which can meet the requirement of QKD.
Keywords:  variable optical attenuator (VOA)      silica      large attenuation range      thermo-optic effect  
Received:  31 May 2022      Revised:  23 July 2022      Accepted manuscript online:  19 August 2022
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2203504), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB43000000), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QF274).
Corresponding Authors:  Pan Pan, Jia-Shun Zhang     E-mail:  panpan1988@semi.ac.cn;zhangjiashun@semi.ac.cn

Cite this article: 

Qing-Hai Liu(刘清海), Pan Pan(潘盼), Jin You(游金), Jia-Shun Zhang(张家顺), Ya Wang(汪亚),Yu-Ting Wang(王玉婷), Liang-Liang Wang(王亮亮), Jun-Ming An(安俊明),Da-Jian Cui(崔大健), Lang Zhou(周浪), and Wei Chen(陈伟) Four-stage cascaded variable optical attenuator with large attenuation range for quantum key distribution 2023 Chin. Phys. B 32 054207

[1] Xu F, Ma X, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 25002
[2] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P and Wallden P 2020 Adv. Opt. Photonics 12 1012
[3] Huang A, Li R, Egorov V, Tchouragoulov S, Kumar K and Makarov V 2020 Phys. Rev. Appl. 13 034017
[4] Zheng Y, Huang P, Huang A, Peng J and Zeng G 2019 Phys. Rev. A 100 012313
[5] Duma V F 2019 Proceedings of the Romanian Academy - Series A: Mathematics, Physics, Technical Sciences, Information Science 20 139
[6] Unamuno A, Blue R and Uttamchandani D 2013 J. Microelectromechanical Syst. 22 1229
[7] Georgescu T S, Dancus I and Ursescu D 2018 Appl. Opt. 57 10051
[8] Cheng J, Liu W, Chen Q, Xu N, Sun Q, Liu Y, Wang W and Xie H 2018 Sensors Actuators, A Phys. 271 398
[9] Quack N, Seok T J, Han S, Sattari H, Graziosi Teodoro, Kiss Marcell, Muller R S and Wu M C 2018 Photonic Networks and Devices, 2018 July 2-5, 2018 Switzerland, Zurich, p. NeM4F.1
[10] Wan J, Xue F, Liu C, Huang S, Fan S and Hu F 2018 Appl. Opt. 57 8114
[11] Riza N A and Khan S A 2004 Appl. Opt. 43 3449
[12] Reza S A and Riza N A 2009 Opt. Commun. 282 1298
[13] Quack N, Seok T J, Han S, Sattari H, Graziosi T, Kiss M, Muller R S and Wu M C 2018 Photonic Networks and Devices 2018, July 2-5, 2018 Switzerland, Zurich, p. NeM4F.1
[14] Mane S M, Digge J and Rindhe B 2021 2021 6th Int. Conf. Converg. Technol. I2CT, April 2-4, 2021 Maharashtra, India, p. 1
[15] Sui G, Wu J, Zhang Y, Yin C and Gao X 2018 Sci. Rep. 8 1
[16] Huang C H and Erwin H W 2018 Chin. Opt. Lett. 16 042301
[17] Ni F C, Xie Z T, Ma Q C, Tao J, Wu L, Yu C and Huang X G 2018 Opt. Commun. 426 251
[18] El-Fiky E, Jacques M, Samani A, Xu L, Saber M G and Plant D V 2019 IEEE Photonics J. 11 6602508
[19] Ren M Z, Zhang J S, An J M, Wang Y, Wang L L, Li J G, Wu Y Da, Yin X and Hu X W 2017 Chin. Phys. B 26 074221
[20] Wang H, Li X, Zhou Q, Ge L, Jiang X and Yang J 2010 2010 Symposium on Photonics and Optoelectronics, June 19-21, 2010 Chengdu, China, p. 1
[21] Yuan P, Wang Y, Wu Y and An J 2019 Appl. Opt. 58 4630
[22] Himeno A 2000 Mater. Res. Soc. Symp. - Proc. 597 41
[23] Cao X and He S L 2003 Chin. Phys. Lett. 20 1081
[24] Yu Y Y, Sun X Q, Ji L T, He G B, Wang X B, Yi Y J, Chen C M, Wang F, Zhang D M 2016 Chin. Phys. B 25 054101
[25] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 1
[1] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[2] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[3] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[4] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[5] Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate
Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇). Chin. Phys. B, 2020, 29(12): 128101.
[6] Mechanical and microstructural response of densified silica glass under uniaxial compression: Atomistic simulations
Yi-Fan Xie(谢轶凡), Feng Feng(冯锋), Ying-Jun Li(李英骏)†, Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立)‡, and Yong Mei(梅勇)§. Chin. Phys. B, 2020, 29(10): 108101.
[7] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[8] A revised jump-diffusion and rotation-diffusion model
Hua Li(李华), Yu-Hang Chen(陈昱沆), Bin-Ze Tang(唐宾泽). Chin. Phys. B, 2019, 28(5): 056105.
[9] The structure and elasticity of phase B silicates under high pressure by first principles simulation
Lei Liu(刘雷), Li Yi(易丽), Hong Liu(刘红), Ying Li(李营), Chun-Qiang Zhuang(庄春强), Long-Xing Yang(杨龙星), Gui-Ping Liu(刘桂平). Chin. Phys. B, 2018, 27(4): 047402.
[10] Pressure-induced structural evolution of apatite-type La9.33Si6O26
Guangchao Yin(尹广超), Hong Yin(殷红), Meiling Sun(孙美玲), Wei Gao(高伟). Chin. Phys. B, 2018, 27(1): 018202.
[11] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[12] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[13] Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics
Xiang He(何祥), Heng Zhao(赵恒), Gang Wang(王刚), Peifan Zhou(周佩璠), Ping Ma(马平). Chin. Phys. B, 2016, 25(8): 088105.
[14] Stable structure and optical properties of fused silica with NBOHC-E' defect
Peng-Fei Lu(芦鹏飞), Li-Yuan Wu(伍力源), Yang Yang(杨阳), Wei-Zheng Wang(王唯正), Chun-Fang Zhang(张春芳), Chuang-Hua Yang(杨创华), Rui Su(苏锐), Jun Chen(陈军). Chin. Phys. B, 2016, 25(8): 086801.
[15] Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations
Bo Xu(徐波), Huan-Sheng Lu(卢欢胜), Bo Liu(刘波), Gang Liu(刘刚), Mu-Sheng Wu(吴木生), Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2016, 25(6): 067103.
No Suggested Reading articles found!