Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054206    DOI: 10.1088/1674-1056/ac9a3a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High efficiency of Brillouin scattering behavior in single-mode Ge-As-Se-Te fibers at 2 μm

Yue Fu(付悦)1,2,3, Shi-Xun Dai(戴世勋)1,2,3,†, Lu-Lu Xu(徐路路)1,2,3, Yao-Jun Fang(方耀俊)4, Ying-Ying Wang(王莹莹)1,2,3, Kai Jiao(焦凯)1,2,3, and Xun-Si Wang(王训四)1,2,3
1 Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China;
2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China;
3 Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China;
4 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
Abstract  The Brillouin characteristics of step-index Ge-As-Se-Te (GAST) fibers at 2 μm are designed and simulated on the basis of optical and acoustic properties. The refractive indexes of Ge$_{20}$As$_{20}$Se$_{45}$Te$_{15}$ glass and Ge$_{20}$As$_{20}$Se$_{43}$Te$_{17}$ glass serving as fiber core and cladding are 3.20 and 3.18 at 2 μm, and their acoustic velocities are 2200 m/s and 2300 m/s, respectively. Numerical results indicate that the stimulated Brillouin scattering (SBS) efficiency is 248 m$^{-1}\cdot$W$^{-1}$, and the Brillouin threshold power is 66 mW when the core diameter of the 2-m-long GAST fiber is 4 μm at 2-μm wavelength. The optic-acoustic coupling factor, the Brillouin frequency shift, and the Brillouin gain coefficient are 0.98, 7.02 GHz, and 3.81$\times10^{-9}$ m/W, respectively. The SBS effect of GAST fibers simulated for the first time provides a new promising approach to selecting gain medium based on 2-μm-wavelength fiber laser.
Keywords:  stimulated Brillouin scattering      chalcogenide fiber      nonlinear effect      optical-acoustic coupling  
Received:  21 June 2022      Revised:  08 October 2022      Accepted manuscript online:  14 October 2022
PACS:  42.55.Wd (Fiber lasers)  
  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  42.81.-i (Fiber optics)  
  78.20.Pa (Photoacoustic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875094 and 62090064), the China Postdoctoral Science Foundation (Grant No. 2018M642386), and the K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Shi-Xun Dai     E-mail:  daishixun@nbu.edu.cn

Cite this article: 

Yue Fu(付悦), Shi-Xun Dai(戴世勋), Lu-Lu Xu(徐路路), Yao-Jun Fang(方耀俊), Ying-Ying Wang(王莹莹), Kai Jiao(焦凯), and Xun-Si Wang(王训四) High efficiency of Brillouin scattering behavior in single-mode Ge-As-Se-Te fibers at 2 μm 2023 Chin. Phys. B 32 054206

[1] Leng J Y, Chen S P, Wu W M, Hou J and Xu X J 2011 Opt. Commun. 284 2997
[2] Mihelic F, Bacquet D, Zemmouri J and Szriftgiser P 2010 Opt. Lett. 35 432
[3] Rossi L, Marini D, Bastianini F and Bolognini G 2019 Opt. Express 27 29447
[4] Tanemura T, Takushima Y and Kikuchi K 2002 Opt. Lett. 27 1552
[5] Huang S H, Zhu T, Yin G L, Lan T Y, Huang L G, Li F H, Bai Y Z, Qu D R, Huang X B and Qiu F 2017 Opt. Lett. 42 5286
[6] Luo Y F, Tang Y L, Yang J L, Wang Y, Wang S W, Tao K Y, Zhan L and Xu J Q 2014 Opt. Lett. 39 2626
[7] Wang X, Zhou P, Wang X L, Xiao H and Si L 2014 IEEE Photon. J. 6 1
[8] Kobyakov A, Kumar S, Chowdhury D Q, Ruffin A B, Sauer M, Bickham S R and Mishra R 2005 Opt. Express 13 5338
[9] Abedin K S 2005 Opt. Express 13 10266
[10] Deroh M, Beugnot J C, Hammani K, Finot C, Fatome J, Smektala F, Maillotte H, Sylvestre T and Kibler B 2020 J. Opt. Soc. Am. B 37 3792
[11] Florea C, Bashkansky M, Dutton Z, Sanghera J, Pureza P and Aggarwal I 2006 Opt. Express 14 12063
[12] Tow K H, Leguillon Y, Fresnel S, Besnard P, Brilland L, Mechin D, Toupin P and Troles J 2013 IEEE Photon. Technol. Lett. 25 238
[13] Wang Y Y, Xu L L, Jiang L, Dai S X, Yang P L and Yi L L 2021 Opt. Commun. 484 126678
[14] Hu K, Kabakova I V, Büttner T F S, Lefrancois S, Hudson D D, He S and Eggleton B J 2014 Opt. Lett. 39 4651
[15] Liu J, Jiao K, Xu T S, Liang X L, Zhong M H, Wang X G, Zhao Z M, Si N, Tian Y M, Wang R P, Shen X and Wang X S 2020 Spectrochim. Acta A Mol. Biomol. Spectrosc. 229 117885
[16] Peng X F, Jiang L, Li G T, Yuan Y, Wang Y Y, Dai S X, Zhang N, Su J X, Yang P L and Zhang P Q 2019 J. Non. Cryst. Solids 525 119690
[17] Jiang C, Wang X S, Zhu M M, Xu H J, Nie Q H, Dai S X, Tao G M, Shen X, Cheng C, Zhu Q D, Liao F X, Zhang P Q, Zhang P Q, Liu Z J and Zhang X H 2016 Opt. Eng. 55 56114
[18] Agrawal G P 2000 Nonlinear Science at the Dawn of the 21st Century (Berlin: Springer) p. 195
[19] Boyd R W 2020 Nonlinear optics (London: Academic Press) p. 419
[20] Silva R E, Franco M A R, Bartelt H and Pohl A A P 2013 Workshop on Specialty Optical Fibers and their Applications, August 28-30, 2013, Sigtuna, Sweden, p. F2.20
[21] Cheng T L, Liao M S, Gao W Q, Duan Z C, Suzuki T and Ohishi Y 2012 Opt. Express 20 28846
[22] Wang X, Zhou P, Wang X L, Xiao H and Si L 2013 Opt. Express 21 32386
[23] Chen X, Xia L, Li W and Li C 2017 Chin Opt Lett 15 42901
[24] Cherif R, Zghal M and Tartara L 2012 Opt. Commun. 285 341
[25] Zhong M H, Liang X L, Jiao K, Wang X G, Si N, Xu T S, Xiao J, Liu J, Yang P L, Zhao Z M, Wang X S, Wang R P, Zhou Y X, Zhang P Q, Liu Y X and Nie Q H 2022 J. Light. Technol. 38 4533
[26] Baili A, Cherif R, Salem A B, Kumar A, Sinha R and Zghal M 2015 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, August 26, 2015, California, USA, p. 136
[27] Li L J, Lai Y Z, Cao M Y, Yuan X M, Xu Z, Guan J P, Jing S and Jing L 2013 Acta Phys. Sin. 62 140201 (in Chinese)
[28] Cao M, Huang L, Tang M, Mi Y A and Ren G B 2020 Opt. Lett. 45 1427
[29] Shiryaev V, Churbanov M, Dianov E, Plotnichenko V, Adam J and Lucas J 2005 J. Optoelectron. Adv. M. 7 1773
[30] Strutynski C, Picot-Clémente J, Lemiere A, Froidevaux P, Désévédavy F, Gadret G, Jules J C, Kibler B and Smektala F 2016 J. Opt. Soc. Am. B 33 D12
[31] Cheng T L, Cherif R, Liao M S, Gao W Q, Duan Z C, Zghal M, Suzuki T and Ohishi Y 2012 Appl. Phys. Express 5 102501
[1] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[2] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[3] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[4] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[5] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[6] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Propagation characteristics of parallel dark solitons in silicon-on-insulator waveguide
Zhen Liu(刘振), Weiguo Jia(贾维国), Yang Wang(汪洋), Hongyu Wang(王红玉), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(1): 014203.
[9] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[10] Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers
Kundong Mo(莫坤东), Bo Zhai(翟波), Jianfeng Li(李剑峰), E Coscelli, F Poli, A Cucinotta, S Selleri, Chen Wei(韦晨), Yong Liu(刘永). Chin. Phys. B, 2017, 26(5): 054216.
[11] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[12] Self-organized voids revisited:Experimental verification of the formation mechanism
Song Juan (宋娟), Ye Jun-Yi (叶俊毅), Qian Meng-Di (钱梦迪), Luo Fang-Fang (骆芳芳), Lin Xian (林贤), Bian Hua-Dong (卞华栋), Dai Ye (戴晔), Ma Guo-Hong (马国宏), Chen Qing-Xi (陈庆希), Jiang Yan (姜燕), Zhao Quan-Zhong (赵全忠), Qiu Jian-Rong (邱建荣). Chin. Phys. B, 2014, 23(7): 077901.
[13] Nonlinear effect of the structured light profilometry in the phase-shifting method and error correction
Zhang Wan-Zhen (张万祯), Chen Zhe-Bo (陈浙泊), Xia Bin-Feng (夏彬峰), Lin Bin (林斌), Cao Xiang-Qun (曹向群). Chin. Phys. B, 2014, 23(4): 044212.
[14] A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser
Hu Xiao-Yang (胡晓阳), Chen Wei (陈伟), Tu Xiao-Bo (涂晓波), Meng Zhou (孟洲). Chin. Phys. B, 2014, 23(12): 124208.
[15] Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering
Zhang Lei (张磊), Zhang Dong (张东), Li Jin-Zeng (李金增). Chin. Phys. B, 2013, 22(7): 074207.
No Suggested Reading articles found!