ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High efficiency of Brillouin scattering behavior in single-mode Ge-As-Se-Te fibers at 2 μm |
Yue Fu(付悦)1,2,3, Shi-Xun Dai(戴世勋)1,2,3,†, Lu-Lu Xu(徐路路)1,2,3, Yao-Jun Fang(方耀俊)4, Ying-Ying Wang(王莹莹)1,2,3, Kai Jiao(焦凯)1,2,3, and Xun-Si Wang(王训四)1,2,3 |
1 Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China; 2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China; 3 Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China; 4 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China |
|
|
Abstract The Brillouin characteristics of step-index Ge-As-Se-Te (GAST) fibers at 2 μm are designed and simulated on the basis of optical and acoustic properties. The refractive indexes of Ge$_{20}$As$_{20}$Se$_{45}$Te$_{15}$ glass and Ge$_{20}$As$_{20}$Se$_{43}$Te$_{17}$ glass serving as fiber core and cladding are 3.20 and 3.18 at 2 μm, and their acoustic velocities are 2200 m/s and 2300 m/s, respectively. Numerical results indicate that the stimulated Brillouin scattering (SBS) efficiency is 248 m$^{-1}\cdot$W$^{-1}$, and the Brillouin threshold power is 66 mW when the core diameter of the 2-m-long GAST fiber is 4 μm at 2-μm wavelength. The optic-acoustic coupling factor, the Brillouin frequency shift, and the Brillouin gain coefficient are 0.98, 7.02 GHz, and 3.81$\times10^{-9}$ m/W, respectively. The SBS effect of GAST fibers simulated for the first time provides a new promising approach to selecting gain medium based on 2-μm-wavelength fiber laser.
|
Received: 21 June 2022
Revised: 08 October 2022
Accepted manuscript online: 14 October 2022
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.65.Es
|
(Stimulated Brillouin and Rayleigh scattering)
|
|
42.81.-i
|
(Fiber optics)
|
|
78.20.Pa
|
(Photoacoustic effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875094 and 62090064), the China Postdoctoral Science Foundation (Grant No. 2018M642386), and the K. C. Wong Magna Fund in Ningbo University. |
Corresponding Authors:
Shi-Xun Dai
E-mail: daishixun@nbu.edu.cn
|
Cite this article:
Yue Fu(付悦), Shi-Xun Dai(戴世勋), Lu-Lu Xu(徐路路), Yao-Jun Fang(方耀俊), Ying-Ying Wang(王莹莹), Kai Jiao(焦凯), and Xun-Si Wang(王训四) High efficiency of Brillouin scattering behavior in single-mode Ge-As-Se-Te fibers at 2 μm 2023 Chin. Phys. B 32 054206
|
[1] Leng J Y, Chen S P, Wu W M, Hou J and Xu X J 2011 Opt. Commun. 284 2997 [2] Mihelic F, Bacquet D, Zemmouri J and Szriftgiser P 2010 Opt. Lett. 35 432 [3] Rossi L, Marini D, Bastianini F and Bolognini G 2019 Opt. Express 27 29447 [4] Tanemura T, Takushima Y and Kikuchi K 2002 Opt. Lett. 27 1552 [5] Huang S H, Zhu T, Yin G L, Lan T Y, Huang L G, Li F H, Bai Y Z, Qu D R, Huang X B and Qiu F 2017 Opt. Lett. 42 5286 [6] Luo Y F, Tang Y L, Yang J L, Wang Y, Wang S W, Tao K Y, Zhan L and Xu J Q 2014 Opt. Lett. 39 2626 [7] Wang X, Zhou P, Wang X L, Xiao H and Si L 2014 IEEE Photon. J. 6 1 [8] Kobyakov A, Kumar S, Chowdhury D Q, Ruffin A B, Sauer M, Bickham S R and Mishra R 2005 Opt. Express 13 5338 [9] Abedin K S 2005 Opt. Express 13 10266 [10] Deroh M, Beugnot J C, Hammani K, Finot C, Fatome J, Smektala F, Maillotte H, Sylvestre T and Kibler B 2020 J. Opt. Soc. Am. B 37 3792 [11] Florea C, Bashkansky M, Dutton Z, Sanghera J, Pureza P and Aggarwal I 2006 Opt. Express 14 12063 [12] Tow K H, Leguillon Y, Fresnel S, Besnard P, Brilland L, Mechin D, Toupin P and Troles J 2013 IEEE Photon. Technol. Lett. 25 238 [13] Wang Y Y, Xu L L, Jiang L, Dai S X, Yang P L and Yi L L 2021 Opt. Commun. 484 126678 [14] Hu K, Kabakova I V, Büttner T F S, Lefrancois S, Hudson D D, He S and Eggleton B J 2014 Opt. Lett. 39 4651 [15] Liu J, Jiao K, Xu T S, Liang X L, Zhong M H, Wang X G, Zhao Z M, Si N, Tian Y M, Wang R P, Shen X and Wang X S 2020 Spectrochim. Acta A Mol. Biomol. Spectrosc. 229 117885 [16] Peng X F, Jiang L, Li G T, Yuan Y, Wang Y Y, Dai S X, Zhang N, Su J X, Yang P L and Zhang P Q 2019 J. Non. Cryst. Solids 525 119690 [17] Jiang C, Wang X S, Zhu M M, Xu H J, Nie Q H, Dai S X, Tao G M, Shen X, Cheng C, Zhu Q D, Liao F X, Zhang P Q, Zhang P Q, Liu Z J and Zhang X H 2016 Opt. Eng. 55 56114 [18] Agrawal G P 2000 Nonlinear Science at the Dawn of the 21st Century (Berlin: Springer) p. 195 [19] Boyd R W 2020 Nonlinear optics (London: Academic Press) p. 419 [20] Silva R E, Franco M A R, Bartelt H and Pohl A A P 2013 Workshop on Specialty Optical Fibers and their Applications, August 28-30, 2013, Sigtuna, Sweden, p. F2.20 [21] Cheng T L, Liao M S, Gao W Q, Duan Z C, Suzuki T and Ohishi Y 2012 Opt. Express 20 28846 [22] Wang X, Zhou P, Wang X L, Xiao H and Si L 2013 Opt. Express 21 32386 [23] Chen X, Xia L, Li W and Li C 2017 Chin Opt Lett 15 42901 [24] Cherif R, Zghal M and Tartara L 2012 Opt. Commun. 285 341 [25] Zhong M H, Liang X L, Jiao K, Wang X G, Si N, Xu T S, Xiao J, Liu J, Yang P L, Zhao Z M, Wang X S, Wang R P, Zhou Y X, Zhang P Q, Liu Y X and Nie Q H 2022 J. Light. Technol. 38 4533 [26] Baili A, Cherif R, Salem A B, Kumar A, Sinha R and Zghal M 2015 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, August 26, 2015, California, USA, p. 136 [27] Li L J, Lai Y Z, Cao M Y, Yuan X M, Xu Z, Guan J P, Jing S and Jing L 2013 Acta Phys. Sin. 62 140201 (in Chinese) [28] Cao M, Huang L, Tang M, Mi Y A and Ren G B 2020 Opt. Lett. 45 1427 [29] Shiryaev V, Churbanov M, Dianov E, Plotnichenko V, Adam J and Lucas J 2005 J. Optoelectron. Adv. M. 7 1773 [30] Strutynski C, Picot-Clémente J, Lemiere A, Froidevaux P, Désévédavy F, Gadret G, Jules J C, Kibler B and Smektala F 2016 J. Opt. Soc. Am. B 33 D12 [31] Cheng T L, Cherif R, Liao M S, Gao W Q, Duan Z C, Zghal M, Suzuki T and Ohishi Y 2012 Appl. Phys. Express 5 102501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|