ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites |
Liang Qiao(乔亮)1,†, Cheng-Fa Tu(涂成发)1, Wei Wu(吴伟)1, Wen-Biao Wang(王文彪)1, Sheng-Yu Yang(杨晟宇)1, Sun Zhe(孙哲)1, Peng Wu(吴鹏)1, Jin-Bo Yang(杨金波)2, Chang-Sheng Wang(王常生)2, Tao Wang(王涛)1, and Fa-Shen Li(李发伸)1 |
1 Institute of Applied Magnetism, Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract Intermetallic complexes of rare-earth and 3d transition metals with core-shell structures are commonly employed as microwave absorbing materials due to their high saturation magnetizations and natural resonance in GHz. Hence, we synthesized Y2Co17 alloy via the co-precipitation reduction-diffusion technique, then coated the Y2Co17 magnetic powders with SiO2 to create Y2Co17@SiO2 core-shell structures. The formation of Y2Co17@SiO2/polyurethane (PU) at various volume fractions and their magnetic, electromagnetic properties were investigated using x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and vector network analyzer. The microwave absorption characteristics of Y2Co17@SiO2/PU were also investigated at various volume fractions. We not only investigate the zero-reflection conditions of the samples with different volume fractions, but also show that every absorber has a strong reflection loss value (RL ≤ -65.00 dB) and excellent microwave absorption properties with an average RL of Y2Co 17@SiO2/PU being below -10 dB at 8 GHz-18 GHz under different thicknesses, showing that the enhancement of microwave absorption performance arises from the balance between permeability and permittivity of absorber.
|
Received: 24 October 2022
Revised: 25 November 2022
Accepted manuscript online: 02 December 2022
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
75.50.Bb
|
(Fe and its alloys)
|
|
76.30.Kg
|
(Rare-earth ions and impurities)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501302), the National Natural Science Foundation of China (Grant No. 51731001), and the Fund from the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization's Key Research and Development Projects. |
Corresponding Authors:
Liang Qiao
E-mail: qiaoliang@lzu.edu.cn
|
Cite this article:
Liang Qiao(乔亮), Cheng-Fa Tu(涂成发), Wei Wu(吴伟), Wen-Biao Wang(王文彪), Sheng-Yu Yang(杨晟宇), Sun Zhe(孙哲), Peng Wu(吴鹏), Jin-Bo Yang(杨金波), Chang-Sheng Wang(王常生), Tao Wang(王涛), and Fa-Shen Li(李发伸) Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites 2023 Chin. Phys. B 32 054202
|
[1] Won H Y, Hong Y K, Choi M, Garcia H, Shin H, Yoon Y S, Lee K, Xin H and Yeo C D 2022 J. Magn. Magn. Mater. 560 169523 [2] Zhang X M, Liu Y, Liu Z Y, Wang Y Q, Wang Y and Kong L B 2022 J. Magn. Magn. Mater. 560 169647 [3] Wang X Y, Y. Liang, Wei S C, Wang Y J, Yuan Y, Li L W, Wang B and Xie H J 2022 J. Magn. Magn. Mater. 560 169450 [4] Wang Y Q, Wang H G, Ye J H, Shi L Y and Feng X 2020 J. Magn. Magn. Mater. 383 123096 [5] Zhang H Z, Jia Z R, Feng A L, Zhou Z H, Zhang C H, Wang K K, Liu N and Wu G L 2020 Compos. Commun. 19 42 [6] Gu X S, Tan G G, Chen S W, Man Q K, Chang C T, Wang X M, Li R W, Che S L and Jiang L Q 2017 J. Magn. Magn. Mater. 424 39 [7] He G H, Duan Y P and Pang H F 2020 Nano-Micro Lett. 12 57 [8] Song Y, Yin F X, Zhang C W, Guo W B, Han L Y and Yuan Y 2017 Nano-Micro Lett. 13 1 [9] Gao S T, Zhang Y C, Xing H L and Li H X 2020 Chem. Eng. J. 389 124149 [10] Guan B W, Ding D H, Wang L F, Wu J Y and Xiong R 2017 Mater. Res. Express 4 056103 [11] Wu Y P, Ong C K, Li Z W, Chen L F Lin G Q and Wang S J 2005 J. Appl. Phys. 97 063909 [12] Wang Y K, Liu Z, Zhang P Y, Cai K T, Yang W Y, Han J Z, Liu S Q, Wang C S, Zou R Q and Yang J B 2021 AIP Adv. 11 015237 [13] Wang G W, Li X L, Wang P, Zhang J M, Wang D, Qiao L, Wang T and Li F S 2018 J. Magn. Magn. Mater. 456 92 [14] Tereshina I S, Veselova S V, Verbetsky V N, Paukov M A, Gorbunov D L and Tereshina-Chitrova E A 2022 J. Alloys Compd. 897 163228 [15] Jaballah H, Bouzidi W, Fersi R, Mliki N and Bessais L 2022 J. Phys. Chem. Solids 161 110438 [16] Yang J B, Yang W Y, Li F S and Yang Y C 2020 J. Magn. Magn. Mater. 497 165961 [17] Han R, Yi H B, Zuo W L, Wang T, Qiao L and Li F S 2012 J. Magn. Magn. Mater. 324 2488 [18] Qiao G Y, Hu Q W, Zhang P Y, Yang W Y, Liu Z, Liu S Q, Wang C S and Yang J B 2020 J. Alloys Compd. 825 154179 [19] Gu X S, Tan G G, Chen S W, Man Q K, Chang C T, Wang X M, Li R W, Che S L and Jiang L Q 2017 J. Magn. Magn. Mater. 424 39 [20] Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B, Lei J P and Lee C G 2006 Appl. Phys. Lett. 89 053115 [21] Chen Y J, Gao P, Zhu C L, Wang R X, Wang L J, Cao M S and Fang X Y 2009 J. Appl. Phys. 106 054303 [22] Jazirehpour M and Seyyed Ebrahimi S A 2015 J. Alloys Compd. 639 280 [23] Li Z X, Ding X L, Li F, Liu X G, Zhang S H and Long H M 2017J. Phys. D: Appl. Phys. 50 445305 [24] Chao F, Liu X G, Sun Y P, Jin C J and Lv Y H 2014 RSC Adv. 4 22710 [25] Zhuang X H, Tan G G, Li F, Ning M Q, Qi C Y, Ge X J, Yang Z and Man Q 2021 J. Alloys Compd. 50 445305 [26] Wu P, Zhang Y D, Hao H B, Qiao L, Liu X, Wang T and Li F S 2022 J. Magn. Magn. Mater. 883 160835 [27] Wang Y K, Lin Z C, Liu Z, Qiao G Y, Zhang P Y, Li K W, Yang W Y, Han J Z, Liu S Q, Wang C S, Qiao L and Yang J B 2022 IEEE Trans. Magn. 58 1 [28] He D L, Dou Z Y, Zhang J M, Wang P, Wang G W, Duan B F, Qiao L and Wang T 2020 J. Magn. Magn. Mater. 322 167191 [29] Kong I, Ahmad H A, Abdullah M H, Hui D, Yusoff A N and Puryanti D 2010 J. Magn. Magn. Mater. 513 3401 [30] Inui T, Konishi K and Oda K 1999 IEEE Trans. Magn. 35 3148 [31] Tu C F, Zheng Z Y, Qiao L, Hao H B, Ma Y G, Sun Z, Wang H, Wang T and Li F S 2020 Acta Phys. Sin. 71 184201 (in Chinese) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|