Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054101    DOI: 10.1088/1674-1056/acb911
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor-coil target

Xiaoxia Yuan(原晓霞)1, Cangtao Zhou(周沧涛)1,†, Hua Zhang(张华)1,‡, Ran Li(李然)1, Yongli Ping(平永利)2, and Jiayong Zhong(仲佳勇)2
1 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China;
2 Department of Astronomy, Beijing Normal University, Beijing 100875, China
Abstract  The dynamics of low-β magnetic reconnection (MR) driven by laser interaction with a capacitor-coil target are reexamined by simulations in this paper. We compare two cases MR and non-MR (also referred as AP-case and P-case standing for the anti-parallel and parallel magnetic field lines, respectively) to distinguish the different characteristics between them. We find that only in the AP-case the reconnection electric field shows up around the X line and the electron jet is directed toward the X line. The quadruple magnetic fields exist in both cases, however, they distribute in the current sheet area in the AP-case, and out of the squeezing area in the P-case, because electrons are demagnetized in the electron diffusion region in the MR process, which is absent in the P-case. The electron acceleration is dominant by the Fermi-like mechanism before the MR process, and by the reconnection electric field when the MR occurs. A power-law electron energy spectrum with an index of 1.8 is found in the AP-case. This work proves the significant potential of this experimental platform to be applied in the studies of low-β astronomy phenomena.
Keywords:  magnetic reconnection      intense laser      low-β plasma  
Received:  22 December 2022      Revised:  28 January 2023      Accepted manuscript online:  04 February 2023
PACS:  41.75.Jv (Laser-driven acceleration?)  
  94.30.cp (Magnetic reconnection)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875092).
Corresponding Authors:  Cangtao Zhou, Hua Zhang     E-mail:  zhoucangtao@sztu.edu.cn;zhanghua@sztu.edu.cn

Cite this article: 

Xiaoxia Yuan(原晓霞), Cangtao Zhou(周沧涛), Hua Zhang(张华), Ran Li(李然), Yongli Ping(平永利), and Jiayong Zhong(仲佳勇) Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor-coil target 2023 Chin. Phys. B 32 054101

[1] Parker E N 1957 J. Geophys. Res. 62 509
[2] Parker E N 1963 Astrophys. J. Suppl. Ser. 8 177
[3] Shibata K and Magara T 2011 Living Rev. Sol. Phys. 8 1
[4] Antiochos S K, DeVore C R and Klimchuk J A 1999 Astrophys. J. 510 485
[5] Cassak P A, Mullan D J and Shay M A 2008 Astrophys. J. 676 2008
[6] Angelopoulos V, McFaddenJ P, Larson D, Carlson C W, Mende S B, Frey H, Phan T, Sibeck D G, Glassmeier K H, Auster U, Donovan E, Mann I R, Rae I J, Russell C T, Runov A, Zhou X Z and Kepko Larry 2008 Science 321 931
[7] Nagai T, Fujimoto M, Saito Y, Machida S, Terasawa T, Nakamura R, Yamamoto T, Mukai T, Nishida A and Kokubun S 1998 J. Geophys. Res. Space Phys. 103 4419
[8] Lu Q M, Fu H S, Wang R S and Lu S 2022 Chin. Phys. B 31 089401
[9] Zhang T L, Lu Q M, Baumjohann W, Russell CT, Fedorov A, Barabash S, Coates A J, Du A M, Cao J B, Nakamura R, Teh W L, Wang R S, Dou X K, Wang S, Glassmeier K H, Auster H U and Balikhin M 2022 Chin. Phys. B 31 089401
[10] Wesson J A 1990 Nucl. Fusion 30 2545
[11] Giovanelli R 1946 Nature 158 81
[12] Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Tabak M, Knauer J P, Sangster T C and Smalyuk V A 2007 Phys. Rev. Lett. 99 015001
[13] Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S M, Wei S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W R, Evans G M, Haines G A, Dangor E and Krushelnick K 2006 Phys. Rev. Lett. 97 255001
[14] Zhong J Y, Li Y T, Wang W G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G and Zhang J 2010 Nat. Phys. 6 984
[15] Fiksel G, Fox W, Bhattacharjee A, Barnak D, Chang P Y, Germaschewski K, Hu S and Nilson P 2014 Phys. Rev. Lett. 113 105003
[16] Yamada M, Ji H, Hsu S, Carter T, Kulsrud R, Ono Y and Perkins F 1997 Phys. Rev. Lett. 78 1997
[17] Egedal J, Fox W, Katz N, Porkolab M, Reim K and Zhang E 2007 Phys. Rev. Lett. 98 015003
[18] Sang L, Lu Q, Xie J, Fan F, Zhang Q, Ding W, Zheng J and Sun X 2022 Phys. Plasmas 29 102108
[19] Ji H, Yamada M, Hsu S and Kulsrud R 1998 Phys. Rev. Lett. 80 3256
[20] Ren Y, Yamada M, Gerhardt S, Ji H, Kulsrud R and Kuritsyn A 2005 Phys. Rev. Lett. 95 055003
[21] Ren Y, Yamada M, Ji H P, Gerhardt S P and Kulsrud R 2008 Phys. Rev. Lett. 101 085003
[22] Gary G A 2001 Sol. Phys. 203 71
[23] Guo F, Li H, Daughton W and Liu Y H 2014 Phys. Rev. Lett. 113 155005
[24] Daido H, Miki F, Mima K, Fujita M, Sawai K, Fujita H, Kitagawa Y, Nakai S and Yamanaka C 1986 Phys. Rev. Lett. 56 846
[25] Santos J, Bailly-Grandvaux M, Giuffrida L, et al. 2015 New J. Phys. 17 083051
[26] Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H and Azechi H 2013 Sci. Rep. 3 1170
[27] Pei X X, Zhong J Y, Sakawa Y, Zhang Z, Zhang K, Wei H G, Li Y T, Li Y F, Zhu B J, Sano T, Hara Y, Kondo S, Fujioka S, Liang G Y, Wang F L and Zhao G 2016 Phys. Plasmas 23 032125
[28] Chien A, Gao L, Zhang S, et al. arXiv: 2201.10052 physics.plasm-ph
[29] Yuan X X, Zhong J Y, Zhang Z, et al. 2018 Plasma Physics and Controlled Fusion 60 065009
[30] Huang K, Lu Q, Gao L, Ji H T, Wang X and Fan F 2018 Phys. Plasmas 25 052104
[31] Huang K, Lu Q, Chien A, Gao L, Ji H T, Wang X and Wang S 2020 Plasma Physics and Controlled Fusion 63 015010
[32] Cerutti B, Werner G R, Uzdensky D A and Begelman M C 2013 Astrophys. J. 770 147
[33] Speiser T 1965 J. Geophys. Res. 70 4219
[34] Huang C, Lu Q and Wang S 2010 Phys. Plasmas 17 072306
[35] Drake J, Swisdak M, Che H and Shay M 2006 Nature 443 553
[36] Fu X R, Lu Q M and Wang S 2006 Phys. Plasmas 13 012309
[37] Huang K, Lu Q M, Huang C, Dong Q L, Wang H Y, Fan F B, Sheng Z M, Wang W and Zhang J 2017 Phys. Plasmas 24 102101
[38] Totorica S R, Abel T and Fiuza F 2016 Phys. Rev. Lett 116 095003
[39] Lu S, Lu Q M, Guo F, Sheng Z M, Wang H Y and Wang S 2016 New J. Phys. 18 013051
[40] Hoshino M, Mukai T, Terasawa T and Shinohara I 2001 J. Geophys. Res. Space Phys. 106 25979
[41] Huang C, Wu M, Lu Q, Wang R and Wang S 2015 J. Geophys. Res. Space Phys. 120 1759
[42] Egedal J, Daughton W and Le A 2012 Nat. Phys. 8 321
[43] Drake J F, Shay M A, Thongthai W and Swisdak M 2005 Phys. Rev. Lett 94 095001
[44] Nan J, Huang K, Lu Q, Lu S, Wang R, Xie J and Zheng J 2022 J. Geophys. Res. Space Phys. 127 e2021JA029996
[45] Arber T, Bennett K, Brady C, Lawrence-Douglas A, Ramsay M, Sircombe N, Gillies P, Evans R, Schmitz H, Bell A and Ridgers C 2015 Plasma Physics and Controlled Fusion 57 113001
[46] Chien A, Gao L, Ji H T, Yuan X X, Blackman E G, Chen H, Efthimion P C, Fiksel G, Froula D H, Hill K W, Huang K, LU Q M, Moody J D and Nilson P M 2019 Phys. Plasmas 26 062113
[47] Ji H T, Terry S, Yamada M, Kulsrud R, Kuritsyn A and Ren Y 2004 Phys. Rev. Lett. 92 115001
[48] Lu Q, Huang C, Xie J, Wang R, Wu M, Vaivads A and Wang S 2010 J. Geophys. 115 A11208
[49] Dong L Q, Wang S J, Lu Q M, et al. 2012 Phys. Rev. Lett. 108 215001
[50] Huang K, Huang C, Dong Q L, Lu Q M, Lu S, Sheng Z M, Wang S and Zhang J 2017 Phys. Plasmas 24 041406
[51] Law K, Bailly-Grandvaux M, Morace A, Sakata S, Matsuo K, Kojima S, Lee S, Vaisseau X, Arikawa Y, Yogo A, Kondo K, Zhang Z, Bellei C, Santos J J, Fujioka S and Azechi H 2016 Appl. Phys. Lett. 108 091104
[52] Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Philos. Trans. Royal Soc. A 378 20200015
[53] Matsuo K, Nagatomo H, Zhang Z, et al. 2017 Phys. Rev. E 95 053204
[54] Perkins L, Logan B, Zimmerman G and Werner C 2013 Phys. Plasmas 20 072708
[55] Miley G, Hora H and Kirchhoff G 2016 J. Phys. Conf. Ser. 717 012095
[56] Weng S M, Zhao Q, Sheng Z M, Yu W, Luan S X, Chen M, Yu L L, Murakami M, Mori W B and Zhang J 2017 Optica 4 1086
[57] Winjum B, Tsung F and Mori M 2018 Phys. Rev. E 98 2018
[58] Edwards M R, Shi Y, Mikhailova J M and Fisch N J 2019 Phys. Rev. Lett. 123 025001
[59] Li X C, Guo F and Liu Y H 2021 Phys. Plasmas 28 052905
[60] Drake J, Opher M, Swisdak M and Chamoun J 2010 Astrophys. J. 709 963
[61] Zenitani S and Hoshino M 2001 Astrophys. J. 562 L63
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[3] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[6] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[7] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[8] Resolving multi-orbital effects on high harmonic generation from aligned N2 molecules in linearly and elliptically polarized intense laser fields
Hong-Jing Liang(梁红静), Xin Fan(范鑫), Shuang Feng(冯爽), Li-Yu Shan(单立宇), Qing-Hua Gao(高庆华), Bo Yan(闫博), Ri Ma(马日), Hai-Feng Xu(徐海峰), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(9): 094211.
[9] Interference effect of photoionization of hydrogen atoms by ultra-short and ultra-fast high-frequency chirped pulses
Ningyue Wang(王宁月), Aihua Liu(刘爱华). Chin. Phys. B, 2019, 28(8): 083403.
[10] Formation of electron depletion layer and parallel electric field in the separatrix region of anti-parallel magnetic reconnection
Zisheng Li(李子圣), Huanyu Wang(王焕宇), Xinliang Gao(高新亮). Chin. Phys. B, 2019, 28(7): 075203.
[11] Observation of the optical X2Σg+-A2Πu coupling in N2+ lasing induced by intense laser field
Siqi Wang(王思琪), Yao Fu(付尧), Danwen Yao(姚丹雯), Shanming Chen(陈善铭), Wei Zhang(张维), Helong Li(李贺龙), Huailiang Xu(徐淮良). Chin. Phys. B, 2019, 28(12): 123301.
[12] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[13] Air lasing: Phenomena and mechanisms
Helong Li(李贺龙), Danwen Yao(姚丹雯), Siqi Wang(王思琪), Yao Fu(付尧), Huailiang Xu(徐淮良). Chin. Phys. B, 2019, 28(11): 114204.
[14] Structural deformation of nitro group of nitromethane molecule in liquid phase in an intense femtosecond laser field
Chang Wang(王畅), Hong-lin Wu(吴红琳), Yun-fei Song(宋云飞), Yan-qiang Yang(杨延强). Chin. Phys. B, 2017, 26(9): 094208.
[15] Theoretical study on non-sequential double ionization of carbon disulfide with different bond lengths in linearly polarized laser fields
Kai-Li Song(宋凯莉), Wei-Wei Yu(于伟威), Shuai Ben(贲帅), Tong-Tong Xu(徐彤彤), Hong-Dan Zhang(张宏丹), Pei-Ying Guo(郭培莹), Jing Guo(郭静). Chin. Phys. B, 2017, 26(2): 023204.
No Suggested Reading articles found!