Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 075203    DOI: 10.1088/1674-1056/28/7/075203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Formation of electron depletion layer and parallel electric field in the separatrix region of anti-parallel magnetic reconnection

Zisheng Li(李子圣)1,2, Huanyu Wang(王焕宇)1,2, Xinliang Gao(高新亮)1,2
1 CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
Abstract  

It is generally accepted that during collisionless magnetic reconnection, electrons flow toward the X line in the separatrix region, and then an electron depletion layer is formed. In this paper, with two-dimensional (2D) particle-in-cell (PIC) simulation, we investigate the characteristics of the separatrix region during magnetic reconnection. In addition to the electron depletion layer, we find that there still exists an electric field parallel to the magnetic field in the separatrix region. Because a reduced ion-to-electron mass ratio and light speed are usually used in PIC simulation models, we also change these parameters to analyze the characteristics of the separatrix region. It is found that the increase in the ion-to-electron mass ratio makes the electron depletion layer and the parallel electric field more obvious, while the influence of light speed is less pronounced.

Keywords:  magnetic reconnection      separatrix region      electron depletion layer  
Received:  16 January 2019      Revised:  12 April 2019      Accepted manuscript online: 
PACS:  52.35.Vd (Magnetic reconnection)  
  52.65.Rr (Particle-in-cell method)  
  52.30.-q (Plasma dynamics and flow)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 41774169, 41527804, and 41804159), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-DQC010), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016395).

Corresponding Authors:  Huanyu Wang     E-mail:  iuwon@ustc.edu.cn

Cite this article: 

Zisheng Li(李子圣), Huanyu Wang(王焕宇), Xinliang Gao(高新亮) Formation of electron depletion layer and parallel electric field in the separatrix region of anti-parallel magnetic reconnection 2019 Chin. Phys. B 28 075203

[32] Lai X, Zhou M, Deng X, Li T and Huang S 2015 Chin. Phys. Lett. 32 095202
[1] Vasyliunas V M 1975 Rev. Geophys. 13 303
[33] Wang R, Nakamura R, Lu Q, Baumjohann W, Ergun R E, Burch J L, Volwerk M, Varsani A, Nakamura T, Gonzalez W, Giles B, Gershman D and Wang S 2017 Phys. Rev. Lett. 118 175101
[2] Biskamp D 2000 Magnetic Reconnection in Plasma (Cambridge: Cambridge University Press)
[34] Yang H, Jin S and Zhou G 2006 J. Geophys. Res. 111 A11223
[3] Priest E and Forbes T 2000 Magnetic Reconnection: MHD Theory and Applications (Cambridge: Cambridge University Press)
[35] Ma Z and Fend S 2008 Chin. Phys. Lett. 25 2934
[36] Bessho N, Chen L, Germaschewski K and Bhattacharjee A 2015 J. Geophys. Res. Space Phys. 120 9355
[4] Daughton W, Scudder J and Karimabadi H 2006 Phys. Plasmas 13 072101
[37] Mozer F S, Bale S D and Phan T D 2002 Phys. Rev. Lett. 89 015002
[5] Lu S, Lu Q, Huang C and Wang S 2013 Phys. Plasmas 20 061203
[38] Lu S, Lu Q, Shao X, Yoon P H and Wang S 2011 Phys. Plasmas 18 072105
[6] Zhou M, Ashour-Abdalla M, Deng X, Pang Y, Fu H, Walker R, Lapenta G, Huang S, Xu X and Tang R 2017 J. Geophys. Res. 122 9513
[39] Lu S, Lu Q, Dong Q, Huang C, Wang S, Zhu J, Sheng Z and Zhang J 2013 Phys. Plasmas 20 112110
[7] Hoshino M, Mukai T, Terasawa T and Shinohara I 2001 J. Geophys. Res. 106 25979
[40] Huang C, Lu Q, Guo F, Wu M, Du A and Wang S 2015 Geophys. Res. Lett. 42 7282
[8] Fu X, Lu Q and Wang S 2006 Phys. Plasmas 13 012309
[41] Huang K, Lu Q, Huang C, Dong Q, Wang H, Fan F, Sheng Z, Wang S and Zhang J 2017 Phys. Plasmas 24 102101
[9] Huang C, Lu Q and Wang S 2010 Phys. Plasmas 17 072306
[42] Wang P, Huang C, Lu Q, Wang R and Wang S 2013 Chin. Phys. Lett. 30 125202
[10] Huang S, Vaivads A, Khotyaintsev Y V, Zhou M, Fu H, Retinó A, Deng X, Andre M, Cully C M, He J, Sahraoui F, Yuan Z and Pang Y 2012 Geophys. Rev. Lett. 39 L11103
[43] Zhang Z, Lu Q, Dong Q, Lu S, Huang C, Wu M, Sheng Z, Wang S and Zhang J 2013 Chin. Phys. Lett. 30 045201
[11] Fu H, Khotyaintsev Y V, Vaivads A, Retinó A and André M 2013 Nat. Phys. 9 426
[44] Northrop T 1963 The Adiabatic Motion of Charged Particles (New York: Wiley)
[12] Dahlin J, Drake J and Swisdak M 2014 Phys. Plasmas 21 092304
[13] Wang H, Lu Q, Huang C and Wang S 2016 Astrophys. J. 821 84
[45] Retinó A, Vaivads A, André M, Saharaoui F, Khotyaintsev Y, Pickett J S, Bavassano-Cattaneo M B, Marcucci M F, Morooka M, Owen J C, Buchert S C and Cornilleau-Wehrlin N 2006 Geophys. Res. Lett. 33 L06101
[14] Lu S, Angelopoulos V and Fu H 2016 J. Geophys. Res. 121 9483
[46] Lindstedt T, Khotyaintsev Y V, Vaivads A, André M, Fear R C, Lavraud B, Haaland S and Owen C J 2009 Ann. Geophys. 27 4039
[15] Lu Q, Wang H, Huang K, Wang R and Wang S 2018 Phys. Plasmas 25 072126
[16] Zhou M, El-Alaoui M, Lapenta G, Berchem J, Richard R L, Schriver D and Walker R J 2018 J. Geophys. Res. 123 8087
[17] Wang R, Lu Q, Khotyaintsev Y V, Volwerk M, Du A, Nakamura R, Gonzalez W D, Sun X, Baumjohann W, Li X, Zhang T, Fazakerley A N, Huang C and Wu M 2014 Geophys. Res. Lett. 41 4851
[18] Lu Q, Huang C, Xie J, Wang R, Wu M, Vaivads A and Wang S 2010 J. Geophys. Res. 115 A11208
[19] Lu S, Lu Q, Cao Y, Huang C, Xie J and Wang S 2011 Chin. Sci. Bull. 56 48
[20] Wang R, Du A, Nakamura R, Lu Q, Khotyaintsev Y V, Volwerk M, Zhang T, Kronberg E A, Daly P W and Fazakerley A N 2013 Geophys. Res. Lett. 40 1
[21] Egedal J, Le A and Daughton W 2013 Phys. Plasmas 20 061201
[22] Huang C, Lu Q, Wang P, Wu M and Wang S 2014 J. Geophys. Res. 119 6445
[23] Lapenta G, Markidis S, Divin A, Newman D and Goldman M 2015 Phys. Plasmas 81 325810109
[24] Egedal J, Le A, Daughton W, Wetherton B, Cassak P A, Chen L, Lavraud B, Torbert R B, Dorelli J, Gershman D J and Avanov L A 2016 Phys. Rev. Lett. 117 185101
[25] Birn J, Drake J F, Shay M A, Rogers B N, Denton R E, Hesse M, Kuznetsova M, Ma Z, Bhattacharjee A, Otto A and Pritchett P L 2001 J. Geophys. Res. 106 3715
[26] Pritchett P 2001 J. Geophys. Res. 106 3783
[27] Nagai T, Shinohara I, Fujimoto M, Machida S, Nakamura R, Saito Y and Mukai T 2003 J. Geophys. Res. 108 1357
[28] Sonnerup B 1979 Space Plasma Physics (Vol. 3) (Kennel C F, Lanzerotti L J and Parker E N, Ed.) (Amsterdam: North-Holland Publishing) p. 46
[29] Terasawa T 1983 Geophys. Res. Lett. 10 475
[30] Hesse M, Birn J and Kuznetsova M 2001 J. Geophys. Res. 106 3721
[31] Shay M A, Drake J F, Rogers B N and Denton R E 2001 J. Geophys. Res. 106 3759
[32] Lai X, Zhou M, Deng X, Li T and Huang S 2015 Chin. Phys. Lett. 32 095202
[33] Wang R, Nakamura R, Lu Q, Baumjohann W, Ergun R E, Burch J L, Volwerk M, Varsani A, Nakamura T, Gonzalez W, Giles B, Gershman D and Wang S 2017 Phys. Rev. Lett. 118 175101
[34] Yang H, Jin S and Zhou G 2006 J. Geophys. Res. 111 A11223
[35] Ma Z and Fend S 2008 Chin. Phys. Lett. 25 2934
[36] Bessho N, Chen L, Germaschewski K and Bhattacharjee A 2015 J. Geophys. Res. Space Phys. 120 9355
[37] Mozer F S, Bale S D and Phan T D 2002 Phys. Rev. Lett. 89 015002
[38] Lu S, Lu Q, Shao X, Yoon P H and Wang S 2011 Phys. Plasmas 18 072105
[39] Lu S, Lu Q, Dong Q, Huang C, Wang S, Zhu J, Sheng Z and Zhang J 2013 Phys. Plasmas 20 112110
[40] Huang C, Lu Q, Guo F, Wu M, Du A and Wang S 2015 Geophys. Res. Lett. 42 7282
[41] Huang K, Lu Q, Huang C, Dong Q, Wang H, Fan F, Sheng Z, Wang S and Zhang J 2017 Phys. Plasmas 24 102101
[42] Wang P, Huang C, Lu Q, Wang R and Wang S 2013 Chin. Phys. Lett. 30 125202
[43] Zhang Z, Lu Q, Dong Q, Lu S, Huang C, Wu M, Sheng Z, Wang S and Zhang J 2013 Chin. Phys. Lett. 30 045201
[44] Northrop T 1963 The Adiabatic Motion of Charged Particles (New York: Wiley)
[45] Retinó A, Vaivads A, André M, Saharaoui F, Khotyaintsev Y, Pickett J S, Bavassano-Cattaneo M B, Marcucci M F, Morooka M, Owen J C, Buchert S C and Cornilleau-Wehrlin N 2006 Geophys. Res. Lett. 33 L06101
[46] Lindstedt T, Khotyaintsev Y V, Vaivads A, André M, Fear R C, Lavraud B, Haaland S and Owen C J 2009 Ann. Geophys. 27 4039
[1] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[2] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[3] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[4] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[5] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[6] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[7] Out-of-plane shear flow effects on fast magnetic reconnection in a two-dimensional hybrid simulation model
Wang Lin (王琳), Wang Xian-Qu (王先驱), Wang Xiao-Gang (王晓钢), Liu Yue (刘悦). Chin. Phys. B, 2014, 23(2): 025203.
No Suggested Reading articles found!