|
|
Optical spectroscopy of CrO and electronic states of the Cr group metal monoxides |
Lei Zhang(张磊)1,2, Yao Yu(于尧)1,2, Xinwen Ma(马新文)1,3,4, and Jie Yang(杨杰)1,3,4,† |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, China; 4 CAS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China |
|
|
Abstract All of the experimentally known electronic states of the Cr group metal monoxides (CrO, MoO, and WO) have been presented in the paper. The optical spectra of the CrO molecule have been investigated in the gas phase through a combination of the laser-induced fluorescence (LIF) excitation and single-vibronic-level (SVL) emission spectroscopy in the supersonic expansion. The rotational constants of the vibronic electronic states, including ${\rm X}\,{}^{5}\Pi_{-1}$ ($v'' = 0$-3), ${\rm B}\,{}^{5}\Pi _{-1}$ ($v^\prime =0$-10), and ${\rm B}\,{}^{5}\Pi_{1}$ ($v^\prime = 1$, 5), and the vibrational constants of the spin-orbit components ${\rm X}\,{}^{5}\Pi _{-1,0,1}$ have been obtained. The molecular constants of the MoO and WO molecules have been summarized by reviewing the previous spectroscopic studies, and a comprehensive energy level diagram of the Cr group metal monoxides has been constructed. By comparing the electronic configurations, bond lengths, and vibrational frequencies of all the transition metal monoxides in the ground electronic state, the significance of the relativistic effect in the bonding of the 5d transition metal monoxides has been discussed. The related spectroscopic data of the CrO molecule are available at https://doi.org/10.57760/sciencedb.j00113.00085.
|
Received: 09 November 2022
Revised: 29 January 2023
Accepted manuscript online: 31 January 2023
|
PACS:
|
33.20.Kf
|
(Visible spectra)
|
|
33.20.Vq
|
(Vibration-rotation analysis)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
36.20.Kd
|
(Electronic structure and spectra)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant No. 12027809), and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030900). |
Corresponding Authors:
Jie Yang
E-mail: jie.yang@impcas.ac.cn
|
Cite this article:
Lei Zhang(张磊), Yao Yu(于尧), Xinwen Ma(马新文), and Jie Yang(杨杰) Optical spectroscopy of CrO and electronic states of the Cr group metal monoxides 2023 Chin. Phys. B 32 053301
|
[1] Aoto Y A, de Lima Batista A P, Köhn A and de Oliveira-Filho A G S 2017 J. Chem. Theory. Comput. 13 5291 [2] Claveau E E and Miliordo E 2019 Phys. Chem. Chem. Phys. 21 26324 [3] Smirnov A N, Solomonik V G, Yurchenko S N and Tennyson J 2019 Phys. Chem. Chem. Phys. 21 22794 [4] Morse M D 2019 Acc. Chem. Res. 52 119 [5] Sorensen J J, Ewigleben J C, Tieu E, Sevy A, Merriles D M, Nielson C and Morse M D 2020 J. Chem. Phys. 153 074303 [6] Merriles D M, Sevy A, Nielson C and Morse M D 2020 J. Chem. Phys. 153 024303 [7] Bai X L, Zhang X D, Zhang F Q and Steimle T C 2022 Chin. Phys. B 31 053301 [8] Davis D N 1947 Astrophys. J. 106 28 [9] Kamiński T, Mason E, Tylenda R and Schmidt M R 2015 Astron. Astrophys. 580 A34 [10] Humphreys R M, Ziurys L M, Bernal J J, Gordon M S, Helton L A, Ishibashi K, Jones T J, Richards A M S and Vlemmings W 2019 Astrophys. J. Lett. 874 L26 [11] Pastorello A, Mason E and Taubenberger S 2019 Astron. Astrophys. 630 A75 [12] Merer A J 1989 Annu. Rev. Phys. Chern. 40 407 [13] Gong Y, Zhou M and Andrews L 2009 Chem. Rev. 109 6765 [14] Eder J M and Valenta E 1911 Atlas Typischer Spektren (Wienna, Alfred Hölder) [15] Ferguson W F C 1932 J. Res. Natl. Bur. Stand. 8 381 [16] Ninomiya M 1955 J. Phys. Soc. Jpn. 10 829 [17] Weltner, Jr. W 1967 Science 155 155 [18] Hocking W H, Merer A J, Milton D J, Jones W E and Krishnamurt G 1980 Can. J. Phys. 58 516 [19] Cheung A S C, Żyrnicki W and Merer A J 1984 J. Mol. Spectrosc. 104 315 [20] Barnes M, Hajigorgiou P G and Merer A J 1993 J. Mol. Spectrosc. 160 289 [21] Wenthold P G, Gunion R F and Lineberger W C 1996 Chem. Phys. Lett. 258 101 [22] Hedgecock I M, Naulin C and Costes M 1996 Chem. Phys. 207 379 [23] Hedgecock I M, Naulin C and Costes M 1997 J. Mol. Spectrosc. 184 462 [24] Gutsev G L, Jena P, Zhai H J and Wang L S 2001 J. Chem. Phys. 115 7935 [25] Sheridan P M, Brewster M A and Ziurys L M 2002 Astrophys. J. 576 1108 [26] Bauschlicher Jr C W, Nelin C J and Bagus P S 1985 J. Chern. Phys. 82 3265 [27] Nelin C J and Bauschlicher Jr C W 1985 Chem. Phys. Lett. 118 221 [28] Cooper G A, Gentleman A S, Iskra A and Mackenzie S R 2017 J. Chem. Phys. 147 013921 [29] Picardi G 1933 Atti Accad. Lincei 17 654 [30] Bates J K and Gruen D M 1979 J. Mol. Spectrosc. 78 284 [31] Hamrick Y M, Taylor S and Morse M D 1991 J. Mol. Spectrosc. 146 274 [32] Gunion R F, Dixon-Warren S J, Lineberger W C and Morse M D 1996 J. Chem. Phys. 104 1765 [33] Kuzyakov Y Y, Moskvitina E N and Filippova E N 1997 Spectrosc. Lett. 30 1057 [34] Harms J C, Womack K A, O'Brien L C and Zou W 2014 J. Chem. Phys. 141 134310 [35] Zhang L, Zou W, Yu Y, Zhao D, Ma X and Yang J 2021 J. Quant. Spectrosc. Radiat. Transf. 269 107690 [36] Zhang L, Yu Y, Qian D, Zhao D, Ma X and Yang J 2022 J. Quant. Spectrosc. Radiat. Transf. 277 107962 [37] Gatterer A and Krishnamurty S G 1952 Nature 169 543 [38] Weltner W and McLeod D 1965 J. Mol. Spectrosc. 17 276 [39] Samoilova A N, Efremov Y M and Gurvich L V 1981 J. Mol. Spectrosc. 86 1 [40] Green D W and Ervin K M 1981 J. Mol. Spectrosc. 89 145 [41] Nelin C J and Bauschlicher C W 1985 Chem. Phys. Lett. 118 221 [42] Kuzyakov Y Y, Moskvitina E N and Filippova E M 1997 Spectrosc. Lett. 30 1057 [43] Kuzyakov Y Y, Moskvitina E N and Filippova E M 1998 Chem. Phys. Reports 17 841 [44] Kraus D, Saykally R J and Bondybey V E 1998 Chem. Phys. Lett. 295 285 [45] Lorenz M, Agreiter J, Caspary N and Bondybey V E 1998 Chem. Phys. Lett. 291 291 [46] Lorenz M and Bondybey V E 1999 Chem. Phys. 241 127 [47] Ram R S, Liévin J, Li G, Hirao T and Bernath P F 2001 Chem. Phys. Lett. 343 437 [48] Ram R S, Liévin J and Bernath P F 2009 J. Mol. Spectrosc. 256 216 [49] Zhang J, Zhao D, Ma X and Yang J 2019 J. Mol. Spectrosc. 360 7 [50] Zhang J, Zhao D, Xiang Q, Ma X and Yang J 2019 J. Mol. Spectrosc. 355 96 [51] Zhang L, Yu Y, Cheng R and Yang J 2022 J. Mol. Spectrosc. 390 111716 [52] Fang F, Zhou W, Li Y, Qian D, Luo C, Zhao D, Ma X and Yang J 2021 Rev. Sci. Instrum. 92 043103 [53] Herzberg G 1950 Spectra of Diatomic Molecules (New York:Van Nostrand) [54] Lefebvre-Brion H and Field R W 2004 The Spectra and Dynamics of Diatomic Molecules (New York:Academic Press) [55] Western C M 2017 J. Quant. Spectrosc. Radiat. Transf. 186 221 [56] de Laeter J R, Böhlke J K, de Biévre P, Hidaka H, Peiser H S, Rosman K J R and Taylor P D P 2003 Pure Appl. Chem. 75 683 [57] Halfen D T, Min J and Ziurys L M 2017 J. Mol. Spectrosc. 331 1 [58] Mukund S, Yarlagadda S, Bhattacharyya S and Nakhate S G 2012 J. Quant. Spectrosc. Radiat. Transf. 113 2004 [59] Breier A A, Waßmuth B, Fuchs G W, Gauss J and Giesen T F 2019 J. Mol. Spectrosc. 355 46 [60] Gustavsson T, Amiot C and Vergés J 1991 J. Mol. Spectrosc. 145 56 [61] Hocking W H, Gerry M C L and Merer A J 1979 Can. J. Phys. 57 54 [62] Cheung A S C, Taylor A W and Merer A J 1982 J. Mol. Spectrosc. 92 391 [63] Ishida M, Yamashiro R, Matsumoto Y and Honma K 2006 J. Chem. Phys. 124 204316 [64] Gordon R M and Merer A J 1980 Can. J. Phys. 58 642 [65] Cheung A S C, Gordon R M and Merer A J 1981 J. Mol. Spectrosc. 87 289 [66] Clouthier D J, Huang G, Merer A J and Friedman-Hill E J 1993 J. Chem. Phys. 99 6336 [67] Srdanov V I and Harris D O 1988 J. Chem. Phys. 89 2748 [68] Ram R S and Bernath P F 1992 J. Mol. Spectrosc. 155 315 [69] Appelblad O and Lagerqvist A 1975 Can. J. Phys. 53 2221 [70] Appelblad O and Lagerqvist A 1973 J. Mol. Spectrosc. 48 607 [71] Zack L N, Pulliam R L and Ziurys L M 2009 J. Mol. Spectrosc. 256 186 [72] Moravec V D, Klopcic S A, Chatterjee B and Jarrold C C 2001 Chem. Phys. Lett. 341 313 [73] Smirnov A N, Solomonik V G, Yurchenko S N and Tennyson J 2019 Phys. Chem. Chem. Phys. 21 22794 [74] Bernard A, Bacis R and Luc P 1979 Astrophys. J. 227 338 [75] Hoeft J and Törring T 1993 Chem. Phys. Lett. 215 367 [76] Phillips J G and Davis S P 1976 Astrophys. J. Suppl. 32 537 [77] Femenias J L and Cheval G 1987 J. Mol. Spectrosc. 124 348 [78] Adam A G, Azuma Y, Barry J A, Merer A J, Sassenberg U, Schröder J O, Cheval G and Féménias J L 1994 J. Chem. Phys. 100 6240 [79] Gertner M R, Shin J B and Nicholls R W 1993 Spectrosc. Lett. 26 677 [80] Song P, Guan W, Yao C, Su M Z, Wu Z J, Feng J D and Yan L K 2007 Theor. Chem. Acc. 117 407 [81] Wang N, Ng Y W and Cheung A S C 2013 J. Phys. Chem. A 117 13279 [82] Yu Y, Zhang L, Niu Y, Zou W, Cheng R and Yang J 2022 J. Quant. Spectrosc. Radiat. Transf. 288 108247 [83] Gengler J, Ma T, Adam A G and Steimle T C 2007 J. Chem. Phys. 126 134304 [84] Jensen R H, Fougére S G and Balfour W J 2003 Chem. Phys. Lett. 370 106 [85] Ramond T M, Davico G E, Hellberg F, Svedberg F, Salén P, Söderqvist P and Lineberger W C 2002 J. Mol. Spectrosc. 216 1 [86] Almeida N M S, Ariyarathna I R and Miliordos E 2018 Phys. Chem. Chem. Phys. 20 14578 [87] O'Brien L C, Wall S J and Sieber M K 1997 J. Mol. Spectrosc. 183 1 [88] Bojović V, Antić-Jovanović A, Stoiljkoviać M M, Miletić M and Pecić D S 1999 Spectrosc. Lett. 32 875 [89] Chertihin G V and Andrews L 1997 J. Chem. Phys. 106 3457 [90] Peterson K A, Shepler B C and Singleton J M 2007 Mol. Phys. 105 1139 [91] Green D W 1971 Can. J. Phys. 49 2552 [92] Green D W 1971 J. Mol. Spectrosc. 40 501 [93] Hansson A, Pettersson A, Royen P and Sassenberg U 2004 J. Mol. Spectrosc. 224 157 [94] Al-Khalili A, Hällsten U and Launila O 1999 J. Mol. Spectrosc. 198 230 [95] Tovar K A and Varberg T D 2022 J. Mol. Spectrosc. 387 111666 [96] Roberts M A, Alfonzo C G, Manke K J, Ames W M, Ron D B and Varberg T D 2007 Mol. Phys. 105 917 [97] Balfour W and Ram R S 1984 Can. J. Phys. 62 1524 [98] Yao C, Guan W, Song P, Su Z M, Feng J D, Yan L K and Wu Z J 2007 Theor. Chem. Acc. 117 115 [99] Balfour W J and Ram R S 1984 J. Mol. Spectrosc. 105 360 [100] Pang H F, Ng Y W and Cheung A S C 2012 J. Phys. Chem. A 116 9739 [101] Sassenberg U and Scullman R 1977 J. Mol. Spectrosc. 68 331 [102] Okabayashi T, Yamazaki E and Tanimoto M 2005 J. Mol. Spectrosc. 229 283 [103] Sassenberg U and Scullman R 1983 Physica Scripta 28 139 [104] O'Brien L C, Hardimon S C and O'Brien J J 2004 J. Phys. Chem. A 108 11302 [105] Xiang Q L, Yang J, Zhang S L, Zhang J C and Ma X W 2019 Spectrosc. Lett. 52 21 [106] Okabayashi T, Koto F, Tsukamoto K, Yamazaki E and Tanimoto M 2005 Chem. Phys. Lett. 403 223 [107] Chambaud G, Guitou M and Hayashi S 2008 Chem. Phys. 352 147 [108] Schwerdtfeger P, Dolg M, Schwarz W H E, Bowmaker G A and Boyd P D W 1989 J. Chem. Phys. 91 1762 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|