1 The Key Laboratory of Advanced Semiconductor Devices and Materials, Xi'an University of Posts&Telecommunications, Xi'an 710121, China; 2 The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, China
Abstract The -GaO films with different thicknesses are prepared by an atomic layer deposition system. The influence of film thickness on the crystal quality is obvious, indicating that the thicker films perform better crystal quality, which is verified from x-ray diffraction (XRD) and scanning electron microscope (SEM) results. The GaO-based solar blind photodetectors with different thicknesses are fabricated and studied. The experimental results show that the responsivity of the photodetectors increases exponentially with the increase of the film thickness. The photodetectors with inter-fingered structure based on 900 growth cycles -GaO active layers (corresponding film thickness of 58 nm) exhibit the best performances including a low dark current of 134 fA, photo-to-dark current ratio of 1.5, photoresponsivity of 1.56 A/W, detectivity of 2.77 Jones, and external quantum efficiency of 764.49% at a bias voltage of 10 V under 254-nm DUV illumination. The photoresponse rejection ratio () is up to . In addition, we find that the photoelectric characteristics also depend on the finger spacing of the MSM structure. As the finger spacing decreases from 50 μm to 10 μm, the photoresponsivity, detectivity, and external quantum efficiency increase significantly.
Fund: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JQ-701) and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 21JK0919).
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰) Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition 2023 Chin. Phys. B 32 048502
[1] Pearton S J, Yang J C, Cary IV P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev.5 011301 [2] Baldini M, Galazka Z and Wagner G 2018 Mater. Sci. Semicond. Proc.78 132 [3] Hao W B, He Q M, Zhou K, Xu G W, Xiong W H, Zhou X Z, Jian G Z, Chen C, Zhao X L and Long S B 2021 Appl. Phys. Lett.118 043501 [4] Zhong M Z, Wei Z M, Meng X Q, Wu F M and Li J B 2015 J. Alloys Compd.619 572 [5] Ogita M, Higo K, Nakanishi Y and Hatanaka Y 2001 Appl. Surf. Sci.175 721 [6] Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K and Tanaka I 2007 J. Phys.: Condens. Matter19 346211 [7] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L and Luo L B 2019 Adv. Fuct. Mater.29 1806006 [8] Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K and Lee S W 2017 ACS Photon.4 2937 [9] Feng Z X, Anhar Uddin Bhuiyan A F M, Karim M R and Zhao H P 2019 Appl. Phys. Lett.114 250601 [10] Yu F P, Ou S L and Wu D S 2015 Opt. Mater. Express5 1240 [11] Sasaki K, Kuramata A, Masui T, Villora E G, Shimamura K and Yamakoshi S 2012 Appl. Phys. Express5 035502 [12] Cheng Y L, Xu Y, Li Z, Zhang J Q, Chen D Z, Feng Q, Xu S R, Zhou H, Zhang J C, Hao Y and Zhang C F 2022 J. Alloys Compd.831 154776 [13] Saikumar A K, Nehate S D and Sundaram K B 2019 ECS J. Solid Sci. Technol.8 Q3064 [14] Shen H, Baskaran K, Yin Y, Tian K, Duan L B, Zhao X R and Tiwari A 2020 J. Alloys Compd.822 153419 [15] Zhang X Y, Wang L, Wang X D, Chen Y, Shao Q Q, Wu G J, Wang X Y, Lin T, Shen H, Wang J L, Meng X J and Chu J H 2020 Opt. Express28 4169 [16] An Y H, Zhi Y S, Cui W, Zhao X L, Wu Z P, Guo D Y, Li P G and Tang W H 2017 J. Nanosci. Nanotechnol.17 9091 [17] Li X H, Zhang M, Yang J, Xin S, Gao Y, Li Y Z, Li S Y and Wang C J 2022 Acta Phys. Sin.71 048501 (in Chinese) [18] Sun R, Zhang H Y, Wang G G, Han J C, Wang X Z, Cui L, Kuang X P, Zhu C and Jin L 2014 Superlattices Microst.65 146 [19] Jubu P R, Yam F K, Igba V M and Beh K P 2020 J. Solid State Chem.290 121576 [20] An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L H and Tang W H 2016 J. Phys. D: Appl. Phys.49 285111 [21] Liu Z, Zhi Y S, Li S, Liu Y Y, Tang X, Yan Z Y, Li P G, Li X H, Guo D Y, Wu Z P and Tang W H 2019 J. Phys. D: Appl. Phys.53 085105 [22] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y and Li H L 2021 Opt. Mater.112 110808 [23] Li L, Auer E, Liao M Y, Fang X S, Zhai T Y, Gautam U K, Lugstein A, Koide Y, Bando Y and Golberg D 2011 Nanoscale3 1120 [24] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L and Li L H 2014 Appl. Phys. Lett.105 023507 [25] Liu X Z, Liu Q, Zhao B W, Ren Y X, Tao B W and Zhang W L 2020 Vaccum178 109435 [26] Ma M H, Zhang D, Li Y Q, Lin R C, Zheng W and Huang F 2019 ACS Appl. Electron. Mater.1 1653 [27] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd.660 136 [28] Dan Y P, Seo K, Takei K, Meza J H, Javey A and Crozier K B 2011 Nano Lett.11 2527 [29] Liang Z M, Zeng P Y, Liu P Y, Zhao C X, Xie W G and Mai W J 2016 ACS Appl. Mater. Inter.8 19158
[1]
Effects of preparation parameters on growth and properties of β-Ga2O3 film Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.